Improving Hydrological Simulations with a Dynamic Vegetation Parameter Framework
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Hydrological Model
3.2. Dynamic Parameterization Considering Vegetation Changes
3.3. Calibration and Evaluation of the Model
4. Results and Discussion
4.1. The Relationship Between K and the NDVI
4.2. Simulation Performance of Full Period
4.3. Simulation Performance During Dry Seasons
4.4. Simulation Performance of Drought Events
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Module | Parameter | Physical Meaning | Range |
---|---|---|---|
Evapotranspiration | K | Ratio of potential evapotranspiration to pan evaporation | 0.7–1.1 |
C | Evapotranspiration coefficient of the deeper soil layer | 0.01–0.05 | |
Runoff generation | WUM | Soil water tension capacity of the upper layer | 0–100 |
WLM | Soil water tension capacity of the lower layer | 0–100 | |
WDM | Soil water tension capacity of the deep layer | 0–50 | |
B | Exponential of the distribution to water tension capacity | 0.1–0.8 | |
IMP | Percentage of impervious and saturated areas in the catchment | 0–0.05 | |
Runoff separation | SM | Free water capacity of the surface soil layer | 0–100 |
EX | Exponent of the free water capacity curve influencing the development of the saturated area | 0–2.5 | |
Routing | KI | Outflow coefficients of soil’s free water storage to interflow | 0–0.7 |
KG | Outflow coefficients of soil’s free water storage to groundwater | 0–0.7 | |
CI | Recession constants of the interflow | 0–1 | |
CG | Recession constants of the groundwater storage | 0–1 | |
Routing (UH) | UH | Unit hydrograph | 0–50 |
L | Lag time | Defined | |
Routing (LR) | CS | Recession constants of the surface flow | 0–1 |
Period | Metric | Model | |
---|---|---|---|
XAJ-UH | XAJ-LR | ||
Calibration | NSE | 0.643 | 0.569 |
r | 0.809 | 0.767 | |
% | −2.2 | 11.6 | |
Validation | NSE | 0.623 | 0.616 |
r | 0.815 | 0.798 | |
% | −21.6 | −8.9 |
References
- Zhang, G.; He, Y.; Huang, J.; Fu, L.; Han, D.; Guan, X.; Zhang, B. Divergent Sensitivity of Vegetation to Aridity between Drylands and Humid Regions. Sci. Total Environ. 2023, 884, 163910. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a Greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Momiyama, H.; Kumagai, T.; Fujime, N.; Egusa, T.; Shimizu, T. Forest Canopy Interception Can Reduce Flood Discharge: Inferences from Model Assumption Analysis. J. Hydrol. 2023, 623, 129843. [Google Scholar] [CrossRef]
- Lan, T.; Lin, K.; Xu, C.-Y.; Liu, Z.; Cai, H. A Framework for Seasonal Variations of Hydrological Model Parameters: Impact on Model Results and Response to Dynamic Catchment Characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 5859–5874. [Google Scholar] [CrossRef]
- Ma, D.; Xu, Y.-P.; Xuan, W.; Gu, H.; Sun, Z.; Bai, Z. Do Model Parameters Change under Changing Climate and Land Use in the Upstream of the Lancang River Basin, China? Hydrol. Sci. J. 2020, 65, 1894–1908. [Google Scholar] [CrossRef]
- Mendoza, P.A.; Clark, M.P.; Barlage, M.; Rajagopalan, B.; Samaniego, L.; Abramowitz, G.; Gupta, H. Are We Unnecessarily Constraining the Agility of Complex Process-Based Models? Water Resour. Res. 2015, 51, 716–728. [Google Scholar] [CrossRef]
- Espinoza, E.A.; Loritz, R.; Chaves, M.Á.; Bäuerle, N.; Ehret, U. To Bucket or Not to Bucket? Analyzing the Performance and Interpretability of Hybrid Hydrological Models with Dynamic Parameterization. Hydrol. Earth Syst. Sci. 2024, 28, 2705–2719. [Google Scholar] [CrossRef]
- Feng, D.; Liu, J.; Lawson, K.; Shen, C. Differentiable, Learnable, Regionalized Process-Based Models With Multiphysical Outputs Can Approach State-Of-The-Art Hydrologic Prediction Accuracy. Water Resour. Res. 2022, 58, e2022WR032404. [Google Scholar] [CrossRef]
- Höge, M.; Scheidegger, A.; Baity-Jesi, M.; Albert, C.; Fenicia, F. Improving Hydrologic Models for Predictions and Process Understanding Using Neural ODEs. Hydrol. Earth Syst. Sci. 2022, 26, 5085–5102. [Google Scholar] [CrossRef]
- Kraft, B.; Jung, M.; Körner, M.; Koirala, S.; Reichstein, M. Towards Hybrid Modeling of the Global Hydrological Cycle. Hydrol. Earth Syst. Sci. 2022, 26, 1579–1614. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, S.; Zheng, Y.; Han, F.; Kumar, R.; Rakovec, O.; Li, S. Distributed Hydrological Modeling with Physics-Encoded Deep Learning: A General Framework and Its Application in the Amazon. Water Resour. Res. 2024, 60, e2023WR036170. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.-P.; Xu, J.; Gu, H.; Bai, Z.; Zhou, P.; Yu, H.; Guo, Y. Increasing Parameter Identifiability through Clustered Time-Varying Sensitivity Analysis. Environ. Model. Softw. 2024, 181, 106189. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Fu, D.; Mao, X. Modifying the SWAT Model to Simulate Eco-Hydrological Processes in an Arid Grassland Dominated Watershed. Front. Environ. Sci. 2022, 10, 939321. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating Actual, Potential, Reference Crop and Pan Evaporation Using Standard Meteorological Data: A Pragmatic Synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-Decadal Trends in Global Terrestrial Evapotranspiration and Its Components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Hare Soil and Grass. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, 2007WR006562. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Zhang, Y.; Liu, C. Incorporating Vegetation Dynamics Noticeably Improved Performance of Hydrological Model under Vegetation Greening. Sci. Total Environ. 2018, 643, 610–622. [Google Scholar] [CrossRef]
- Zore, A.; Bezak, N.; Šraj, M. The Influence of Rainfall Interception on the Erosive Power of Raindrops under the Birch Tree. J. Hydrol. 2022, 613, 128478. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wang, Z.; Zhang, H.; Chen, X.; Wen, Z.; Lin, Z.; Han, P.; Xue, T. Quantifying the Spatiotemporal Changes in Evapotranspiration and Its Components Driven by Vegetation Greening and Climate Change in the Northern Foot of Yinshan Mountain. Remote Sens. 2024, 16, 357. [Google Scholar] [CrossRef]
- Poozan, A.; William Western, A.; James Burns, M.; Arora, M. Modelling the Interaction between Vegetation and Infiltrated Stormwater. J. Hydrol. 2022, 607, 127527. [Google Scholar] [CrossRef]
- Kałuża, T.; Eslamian, S. Impact of the Development of Vegetation on Flow Conditions and Flood Hazards. In Handbook of Engineering Hydrology; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-0-429-09659-4. [Google Scholar]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Xie, J.; Xu, Y.-P.; Wang, Y.; Gu, H.; Wang, F.; Pan, S. Influences of Climatic Variability and Human Activities on Terrestrial Water Storage Variations across the Yellow River Basin in the Recent Decade. J. Hydrol. 2019, 579, 124218. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.-P.; Gu, H.; Liu, L.; Liang, X.; Chen, S. Revealing Joint Evolutions and Causal Interactions in Complex Eco-Hydrological Systems by a Network-Based Framework. Hydrol. Earth Syst. Sci. Discuss. 2024, 2024, 1–31. [Google Scholar] [CrossRef]
- Pan, S.; Liu, L.; Bai, Z.; Xu, Y.-P. Integration of Remote Sensing Evapotranspiration into Multi-Objective Calibration of Distributed Hydrology–Soil–Vegetation Model (DHSVM) in a Humid Region of China. Water 2018, 10, 1841. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; He, Y.; Xie, Y.; Zhang, X.; Li, Z. Changes of Vegetational Cover and the Induced Impacts on Hydrological Processes under Climate Change for a High-Diversity Watershed of South China. J. Environ. Manag. 2022, 322, 115963. [Google Scholar] [CrossRef]
- Bai, Z.; Xu, Y.-P.; Pan, S.; Liu, L.; Wang, Z. Evaluating the Performance of Hydrological Models with Joint Multifractal Spectra. Hydrol. Sci. J. 2022, 67, 1771–1789. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global Land Cover Classification at 1 Km Spatial Resolution Using a Classification Tree Approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Pak, E.W.; Tucker, C.J.; Bhatt, U.S.; Frost, G.V.; Macander, M.J. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022; ORNL DAAC: Oak Ridge, TN, USA, 2023. [Google Scholar] [CrossRef]
- Zhao, R.-J. The Xinanjiang Model Applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Liu, L.; Gu, H.; Xu, Y.-P.; Zheng, C.; Zhou, P. Real-Time Flood Forecasting via Parameter Regionalization and Blending Nowcasts with NWP Forecasts over the Jiao River, China. J. Hydrometeorol. 2023, 24, 561–582. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Xu, Y.-P.; Teegavarapu, R.S.V.; Guo, Y.; Nie, H.; Xie, H.; Zhang, L. River Ecological Flow Early Warning Forecasting Using Baseflow Separation and Machine Learning in the Jiaojiang River Basin, Southeast China. Sci. Total Environ. 2023, 882, 163571. [Google Scholar] [CrossRef] [PubMed]
- Wigmosta, M.S.; Vail, L.W.; Lettenmaier, D.P. A Distributed Hydrology-Vegetation Model for Complex Terrain. Water Resour. Res. 1994, 30, 1665–1679. [Google Scholar] [CrossRef]
- Kollat, J.B.; Reed, P.M. Comparing State-of-the-Art Evolutionary Multi-Objective Algorithms for Long-Term Groundwater Monitoring Design. Adv. Water Resour. 2006, 29, 792–807. [Google Scholar] [CrossRef]
- Kollat, J.B.; Reed, P.M.; Wagener, T. When Are Multiobjective Calibration Trade-Offs in Hydrologic Models Meaningful? Water Resour. Res. 2012, 48, W03520. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Zhang, Y.; Liu, C. Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China. Water Resour. Res. 2020, 56, e2019WR027019. [Google Scholar] [CrossRef]
Model | NSE | r |
---|---|---|
XAJ-UH | 0.635 | 0.799 |
Eco-XAH-UH with Lag-0 module | 0.647 | 0.815 |
Eco-XAH-UH with Lag-1 module | 0.639 | 0.815 |
XAJ-LR | 0.589 | 0.768 |
Eco-XAH-LR with Lag-0 module | 0.599 | 0.777 |
Eco-XAH-LR with Lag-1 module | 0.565 | 0.767 |
Metric | Model | Period | ||||
---|---|---|---|---|---|---|
1990 | 1991 | 1992 | 1993 | 1994 | ||
Eco-XAJ-UH | −0.387 | 0.616 | −1.027 | −0.054 | 0.726 | |
Eco-XAJ-LR | 0.225 | 0.511 | −0.222 | −0.072 | 0.682 | |
XAJ-UH | 0.213 | −0.020 | −1.033 | −0.210 | 0.703 | |
XAJ-LR | 0.343 | 0.058 | −0.669 | −0.310 | 0.654 | |
% | Eco-XAJ-UH | −80.3 | −14.2 | −63.0 | −43.5 | −28.3 |
Eco-XAJ-LR | −3.5 | 35.1 | 42.4 | 32.4 | 6.9 | |
XAJ-UH | −61.4 | 20.2 | −63.9 | −21.9 | −19.8 | |
XAJ-LR | 10.8 | 61.6 | 55.8 | 43.2 | 12.6 |
Durations | % | NDVI | |||
---|---|---|---|---|---|
Eco-XAJ-UH | Eco-XAJ-LR | XAJ-UH | XAJ-LR | ||
1990-11-17–1990-12-07 | −87.0 | −8.7 | −53.2 | 11.5 | 0.7202, 0.6895 |
1991-06-25–1991-07-15 | 94.4 | 143.3 | 132.1 | 173.7 | 0.6700, 0.7388 |
1991-07-15–1991-08-04 | −72.5 | 19.4 | 72.5 | 90.3 | 0.7388, 0.6931 |
1991-08-24–1991-09-13 | −44.4 | 25.2 | 18.6 | 56.5 | 0.6931, 0.7134 |
1991-10-03–1991-10-23 | 17.0 | 38.4 | 172.5 | 176.6 | 0.7483 |
1992-01-11–1992-01-31 | −58.5 | 75.5 | −56.2 | 90.3 | 0.6334 |
1993-02-14–1993-03-06 | −25.3 | −0.9 | −44.7 | 3.9 | 0.4822, 0.5836 |
1993-08-13–1993-09-02 | −91.6 | −15.9 | −67.1 | 1.5 | 0.7179, 0.6819 |
1993-11-21–1993-12-11 | −45.6 | 31.0 | −16.3 | 37.5 | 0.6328, 0.6613 |
1994-07-19–1994-08-08 | −0.2 | 47.0 | 47.3 | 78.1 | 0.6877, 0.6755 |
1994-12-26–1995-01-15 | −43.7 | −5.1 | −45.9 | −4.2 | 0.5556, 0.6637 |
1995-02-04–1995-02-24 | −20.9 | −0.8 | −7.2 | 2.4 | 0.6505 |
1995-07-14–1995-08-03 | −29.0 | −10.9 | 91.3 | 82.1 | 0.7303, 0.6899 |
1995-08-03–1995-08-23 | 24.6 | 47.3 | 126.1 | 141.3 | 0.6899 |
1995-08-23–1995-09-12 | 23.5 | 51.3 | 46.7 | 94.9 | 0.6899, 0.7171 |
1995-09-12–1995-10-02 | −70.2 | 34.9 | −57.8 | 65.7 | 0.7171, 0.7425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Ke, Y.; Bai, Z.; Ma, D.; Wu, Q.; Sun, J.; Yang, W. Improving Hydrological Simulations with a Dynamic Vegetation Parameter Framework. Water 2024, 16, 3335. https://doi.org/10.3390/w16223335
Gu H, Ke Y, Bai Z, Ma D, Wu Q, Sun J, Yang W. Improving Hydrological Simulations with a Dynamic Vegetation Parameter Framework. Water. 2024; 16(22):3335. https://doi.org/10.3390/w16223335
Chicago/Turabian StyleGu, Haiting, Yutai Ke, Zhixu Bai, Di Ma, Qianwen Wu, Jiongwei Sun, and Wanghua Yang. 2024. "Improving Hydrological Simulations with a Dynamic Vegetation Parameter Framework" Water 16, no. 22: 3335. https://doi.org/10.3390/w16223335
APA StyleGu, H., Ke, Y., Bai, Z., Ma, D., Wu, Q., Sun, J., & Yang, W. (2024). Improving Hydrological Simulations with a Dynamic Vegetation Parameter Framework. Water, 16(22), 3335. https://doi.org/10.3390/w16223335