Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quinn, F.H. Secular Changes in Great Lakes Water Level Seasonal Cycles. J. Great Lakes Res. 2002, 28, 451–465. [Google Scholar] [CrossRef]
- Hackl, P.; Ledolter, J. A Statistical Analysis of the Water Levels at Lake Neusiedl. Austrian J. Stat. 2023, 52, 87–100. [Google Scholar] [CrossRef]
- Babayan, G.; Adamovich, B. Water Quality Assessment of Large Alpine Sevan Lake. Environ. Process. 2023, 10, 52. [Google Scholar] [CrossRef]
- Roy, R.; Majumder, M. Assessment of water quality trends in Rudrasagar Lake, Tripura, India. Desalin. Water Treat. 2023, 294, 60–70. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H.; Robertson, D.M.; Lathrop, R.C.; Hamilton, D.P. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrol. Earth Syst. Sci. 2016, 20, 1681–1702. [Google Scholar] [CrossRef]
- Solarski, M.; Rzetala, M. A Comparison of Model Calculations of Ice Thickness with the Observations on Small Water Bodies in Katowice Upland (Southern Poland). Water 2022, 14, 3886. [Google Scholar] [CrossRef]
- Öğlü, B.; Möls, T.; Kaart, T.; Cremona, F.; Kangur, K. Parameterization of surface water temperature and long-term trends in Europe’s fourth largest lake shows recent and rapid warming in winter. Limnologica 2020, 82, 125777. [Google Scholar] [CrossRef]
- Brkić, Z. Increasing water temperature of the largest freshwater lake on the Mediterranean islands as an indicator of global warming. Heliyon 2023, 9, e19248. [Google Scholar] [CrossRef]
- Wan, W.; Li, H.; Xie, H.; Hong, Y.; Long, D.; Zhao, L.; Han, Z.; Cui, Y.; Liu, B.; Wang, C.; et al. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015. Sci. Data 2017, 4, 170095. [Google Scholar] [CrossRef]
- Attiah, G.; Pour, H.K.; Scott, K.A. Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region. Earth Syst. Sci. Data 2023, 15, 1329–1355. [Google Scholar] [CrossRef]
- Sojka, M.; Ptak, M.; Szyga-Pluta, K.; Zhu, S. How Useful Are Moderate Resolution Imaging Spectroradiometer Observations for inland water temperature monitoring and warming trend assessment in temperate lakes in Poland? Remote Sens. 2024, 16, 2727. [Google Scholar] [CrossRef]
- Xu, W.; Duan, L.; Wen, X.; Li, H.; Li, D.; Zhang, Y.; Zhang, H. Effects of Seasonal Variation on Water Quality Parameters and Eutrophication in Lake Yangzong. Water 2022, 14, 2732. [Google Scholar] [CrossRef]
- Haddout, S.; Priya, K.; Boko, M. Thermal response of Moroccan lakes to climatic warming: First results. Ann. Limnol. Int. J. Limnol. 2018, 54, 2. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of Environmental Conditions and Morphometric Parameters on Surface Water Temperature in Polish Lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef]
- Zhang, Y. Effect of climate warming on lake thermal and dissolved oxygen stratifications: A review. Adv. Water Sci. 2015, 26, 130–139. [Google Scholar]
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol. Chem. Eng. S 2016, 23, 639–650. [Google Scholar]
- Yindong, T.; Xiwen, X.; Miao, Q.; Jingjing, S.; Yiyan, Z.; Wei, Z.; Mengzhu, W.; Xuejun, W.; Yang, Z. Lake warming intensifies the seasonal pattern of internal nutrient cycling in the eutrophic lake and potential impacts on algal blooms. Water Res. 2021, 188, 116570. [Google Scholar] [CrossRef]
- Rahel, F.J.; Olden, J.D. Assessing the Effects of Climate Change on Aquatic Invasive Species. Conserv. Biol. 2008, 22, 521–533. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). 2019. Available online: https://wmo.int/topics/climate/ (accessed on 1 October 2024).
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Al-Madhhachi, A.-S.T.; Rahi, K.A.; Leabi, W.K. Hydrological Impact of Ilisu Dam on Mosul Dam; the River Tigris. Geosciences 2020, 10, 120. [Google Scholar] [CrossRef]
- Panahi, D.M.; Kalantari, Z.; Ghajarnia, N.; Seifollahi-Aghmiuni, S.; Destouni, G. Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Sci. Rep. 2020, 10, 7450. [Google Scholar] [CrossRef]
- Herbert, Z.C.; Asghar, Z.; Oroza, C.A. Long-term Reservoir Inflow Forecasts: Enhanced Water Supply and Inflow Volume Accuracy Using Deep Learning. J. Hydrol. 2021, 601, 126676. [Google Scholar] [CrossRef]
- Collados-Lara, A.-J.; Gómez-Gómez, J.-D.; Pulido-Velazquez, D.; Pardo-Igúzquiza, E. An approach to identify the best climate models for the assessment of climate change impacts on meteorological and hydrological droughts. Nat. Hazards Earth Syst. Sci. 2022, 22, 599–616. [Google Scholar] [CrossRef]
- Wang, L.; Xu, B.; Zhang, C.; Fu, G.; Chen, X.; Zheng, Y.; Zhang, J. Surface water temperature prediction in large-deep reservoirs using a long short-term memory model. Ecol. Indic. 2022, 134, 108491. [Google Scholar] [CrossRef]
- Di Nunno, F.; Zhu, S.; Ptak, M.; Sojka, M.; Granata, F. A stacked machine learning model for multi-step ahead prediction of lake surface water temperature. Sci. Total Environ. 2023, 890, 164323. [Google Scholar] [CrossRef]
- Choiński, A. Katalog Jezior Polski; Wydawnictwao Naukowe UAM: Poznań, Poland, 2016. [Google Scholar]
- Sojka, M.; Ptak, M. Possibilities of River Water Temperature Reconstruction Using Statistical Models in the Context of Long-Term Thermal Regime Changes Assessment. Appl. Sci. 2022, 12, 7503. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests, Version 1.6. 31 October 2022. Available online: https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf (accessed on 30 September 2024).
- Piccolroaz, S.; Woolway, R.I.; Merchant, C.J. Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim. Chang. 2020, 160, 427–442. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, Y.; Graf, R.; Wrzesiński, D.; Sojka, M.; Sun, B.; Kong, L.; Ji, Q.; Luo, W. Reconstruction of long-term water temperature indicates significant warming in Polish rivers during 1966–2020. J. Hydrol. Reg. Stud. 2022, 44, 101281. [Google Scholar] [CrossRef]
- Lepori, F.; Roberts, J.J. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers? J. Great Lakes Res. 2015, 41, 973–981. [Google Scholar] [CrossRef]
- Noori, R.; Woolway, R.I.; Jun, C.; Bateni, S.M.; Naderian, D.; Partani, S.; Maghrebi, M.; Pulkkanen, M. Multi-decadal change in summer mean water temperature in Lake Konnevesi, Finland (1984–2021). Ecol. Inform. 2023, 78, 102331. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland –Lake Śniardwy. J. Hydrol. Hydromech. 2020, 68, 260–270. [Google Scholar] [CrossRef]
- Richardson, D.C.; Melles, S.J.; Pilla, R.M.; Hetherington, A.L.; Knoll, L.B.; Williamson, C.E.; Kraemer, B.M.; Jackson, J.R.; Long, E.C.; Moore, K.; et al. Transparency, Geomorphology and Mixing Regime Explain Variability in Trends in Lake Temperature and Stratification across Northeastern North America (1975–2014). Water 2017, 9, 442. [Google Scholar] [CrossRef]
- Cremona, F.; Blank, K.; Haberman, J. Effects of environmental stressors and their interactions on zooplankton biomass and abundance in a large eutrophic lake. Hydrobiologia 2021, 848, 4401–4418. [Google Scholar] [CrossRef]
- Hesselschwerdt, J.; Wantzen, K.M. Global warming may lower thermal barriers against invasive species in freshwater ecosystems—A study from Lake Constance. Sci. Total. Environ. 2018, 645, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, J.; Witkowski, A.; Kotusz, J. Inwazyjne gatunki ryb w Polskich wodach—zagrożenie dla rodzimej ichtiofauny. Użytkowskik Ryb.–Nowa Rzeczyw. PZW 2008, 2008, 90–96. [Google Scholar]
- Mooij, W.M.; De Domis, L.N.S.; Hülsmann, S. The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. J. Sea Res. 2008, 60, 32–43. [Google Scholar] [CrossRef]
- Available online: https://wody.isok.gov.pl/imap_kzgw_test/?gpmap=gpPGW (accessed on 1 October 2024).
- Malmaeus, J.; Blenckner, T.; Markensten, H.; Persson, I. Lake phosphorus dynamics and climate warming: A mechanistic model approach. Ecol. Model. 2006, 190, 1–14. [Google Scholar] [CrossRef]
- Mei, X.; Gao, S.; Liu, Y.; Hu, J.; Razlustkij, V.; Rudstam, L.G.; Jeppesen, E.; Liu, Z.; Zhang, X. Effects of Elevated Temperature on Resources Competition of Nutrient and Light Between Benthic and Planktonic Algae. Front. Environ. Sci. 2022, 10, 908088. [Google Scholar] [CrossRef]
- Dory, F.; Nava, V.; Spreafico, M.; Orlandi, V.; Soler, V.; Leoni, B. Interaction between temperature and nutrients: How does the phytoplankton community cope with climate change? Sci. Total Environ. 2024, 906, 167566. [Google Scholar] [CrossRef]
- Krauze, K.; Wagner, I. An ecohydrological approach for the protection and enhancement of ecosystem services. In Use of Landscape Sciences for the Assessment of Environmental Security; Petrosillo, I., Jones, B., Muller, F., Zurlini, G., Krauze, K., Victorov, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 177–207. [Google Scholar]
No. | Lake | Period | No. | Meteorological Station | Period |
---|---|---|---|---|---|
1 | Morzycko | 2006–2022 | A | Szczecin | 1993–2022 |
2 | Niesłysz | 2008–2022 | B | Zielona Góra | |
3 | Ińsko | 2011–2022 | A | Szczecin | |
4 | Sławskie | 1993–2022 | B | Zielona Góra | |
5 | Lubie | 1993–2022 | C | Piła | |
6 | Ostrowite | 2007–2022 | C | Piła | |
7 | Drawsko | 2000–2022 | C | Piła | |
8 | Komorze | 2006–2022 | C | Piła | |
9 | Sławianowskie | 2007–2022 | C | Piła | |
10 | Sępoleńskie | 1993–2022 | D | Chojnice | |
11 | Dejguny | 2005–2022 | E | Kętrzyn | |
12 | Litygajno | 1993–2022 | E | Kętrzyn | |
13 | Rospuda Filipowska | 2005–2022 | F | Suwałki |
Lake | Area (ha) | Volume (106 m3) | Mean Depth (m) | Max Depth (m) |
---|---|---|---|---|
Morzycko | 317.5 | 49.8 | 14.5 | 60.7 |
Niesłysz | 526 | 34.4 | 6.9 | 34.7 |
Ińsko | 529 | 65.1 | 11 | 41.7 |
Sławskie | 822.5 | 42.6 | 5.2 | 12.3 |
Lubie | 1487.5 | 169.8 | 11.6 | 46.2 |
Ostrowite | 387.6 | 36.4 | 9.4 | 28.5 |
Drawsko | 1797.5 | 331.4 | 17.7 | 82.2 |
Komorze | 386 | 49.3 | 11.8 | 34.7 |
Sławianowskie | 269 | 18.3 | 6.6 | 15 |
Sępoleńskie | 157.5 | 7.5 | 4.8 | 10.9 |
Dejguny | 762.5 | 92.6 | 12 | 45 |
Litygajno | 154.5 | 9.7 | 6 | 16.4 |
Rospuda Filipowska | 323.5 | 49.7 | 14.5 | 38.9 |
Lake | Series | Scope of Data Reconstruction | |
---|---|---|---|
Learning | Validation | ||
Niesłysz | 2012–2022 (n = 132) | 2008–2011 (n = 48) | 1993–2007 (n = 180) |
Morzycko | 2011–2023 (n = 142) Without Jun. and Aug. 2011 | 2006–2010 (n = 60) | 1993–2005 With Jul. and Aug. 2011 (n = 158) |
Ostrowite | 2012–2022 (n = 132) | 2007–2011 (n = 60) | 1993–2006 (n = 168) |
Komorze | 2011–2022 (n = 143) Without May 2019 | 2006–2010 (n = 60) | 1993–2005 (n = 157) With May 2019 |
Drawsko | 2008–2022 (n = 180) | 2000–2007 (n = 92) Without Nov. 2011 and Mar., Apr., and May 2006 | 1993–1999 (n = 88) With Nov. 2011 and Mar., Apr., and May 2006 |
Insko | 2014–2022 (n = 108) | 2011–2013 (n = 36) | 1993–2010 (n = 216) |
Sławianowskie | 2012–2022 (n = 132) | 2007–2011 (n = 60) | 1993–2006 (n = 168) |
Dejguny | 2010–2022 (n = 156) | 2005–2009 (n = 60) | 1993–2004 (n = 144) |
Rospuda Filipowska | 2010–2022 (n = 156) | 2005–2009 (n = 60) | 1993–2004 (n = 144) |
Lake | S | Z-Value | p-Value | Sen’s Slope °C per Decade |
---|---|---|---|---|
Lubie | 252 | 4.71 | 0.000 | 0.64 |
Sępoleńskie | 186 | 3.47 | 0.001 | 0.36 |
Sławskie | 252 | 4.71 | 0.000 | 0.59 |
Litygajno | 236 | 4.41 | 0.000 | 0.63 |
Sławianowskie | 178 | 3.32 | 0.001 | 0.38 |
Ostrowite | 236 | 4.41 | 0.000 | 0.55 |
Niesłysz | 226 | 4.22 | 0.000 | 0.61 |
Morzycko | 224 | 4.18 | 0.000 | 0.49 |
Komorze | 226 | 4.22 | 0.000 | 0.53 |
Ińsko | 212 | 3.96 | 0.000 | 0.42 |
Drawsko | 150 | 2.79 | 0.005 | 0.43 |
Dejguny | 218 | 4.07 | 0.000 | 0.48 |
Rospuda Filipowska | 216 | 4.03 | 0.000 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sojka, M.; Ptak, M. Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes. Water 2024, 16, 3347. https://doi.org/10.3390/w16233347
Sojka M, Ptak M. Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes. Water. 2024; 16(23):3347. https://doi.org/10.3390/w16233347
Chicago/Turabian StyleSojka, Mariusz, and Mariusz Ptak. 2024. "Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes" Water 16, no. 23: 3347. https://doi.org/10.3390/w16233347
APA StyleSojka, M., & Ptak, M. (2024). Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes. Water, 16(23), 3347. https://doi.org/10.3390/w16233347