Integrating Policy Instruments for Enhanced Urban Resilience: A Machine Learning and IoT-Based Approach to Flood Mitigation
Abstract
:1. Introduction
2. Solutions for Enhancing Urban Resilience in Flood Management
2.1. Traditional Flood Mitigation Approaches
2.2. Understanding Resilience
2.2.1. Conception of Resilience
2.2.2. Resilience Implications in Flood Management
2.3. Public Policy’s Role in Enhancing Urban Flood Resilience
3. Methodology
3.1. Structural Approach: IoT-Based Remotely Automatic Water Gate
3.2. Non-Structural Approach: Decision Support System
3.3. Proposing a Comprehensive Resilient Framework for Flood Management
4. Case Analysis
4.1. Study Area
4.2. Data Collection and Model Performance
4.2.1. Terrain Data
4.2.2. Rainfall Data and River Flow Data
4.2.3. HEC-HMS Model Calibration and Model Performance Assessment
4.3. Resutls
4.3.1. HEC-HMS Simulated Streamflow Validation
4.3.2. HEC-RAS Simulated Flood Inundation
5. Discussion and Implications
5.1. Discussion
5.2. Implications
5.2.1. Enhancing Smart City Services
5.2.2. Promoting Technological Innovation
5.2.3. Innovating Integrated Policy Tool Kits
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, V.; Linlong, B.; Arturo, L. A Remotely Operated Framework Based on Internet of Things (IoT) Technology to Release Water from Ponded Systems. In Proceedings of the World Environmental and Water Resources Congress 2022, Atlanta, GA, USA, 5–8 June 2022; pp. 1–7. [Google Scholar]
- Doocy, S.; Amy, D.; Sarah, M.; Thomas, K. The human impact of floods: A historical review of events 1980–2009 and systematic literature review. PLoS Curr. 2013, 5, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J. Crucibles of Hazard: Mega-Cities and Disasters in Transition; United Nations University Press: New York, NY, USA, 1999. [Google Scholar]
- Pidgeon, N.; O’Leary, M. Man-made disasters: Why technology and organizations (sometimes) fail. Saf. Sci. 2000, 34, 15–30. [Google Scholar] [CrossRef]
- Arnbjerg-Nielsen, K.; Fleischer, H. Feasible adaptation strategies for increased risk of flooding in cities due to climate change. Water Sci. Technol. 2009, 60, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Thampapillai, D.; Musgrave, W. Flood damage mitigation: A review of structural and nonstructural measures and alternative decision frameworks. Water Resour. Res. 1985, 21, 411–424. [Google Scholar] [CrossRef]
- Tang, Y.; Leon, A.; Kavvas, M. Impact of size and location of wetlands on watershed-scale flood control. Water Resour. Manag. 2022, 34, 1693–1707. [Google Scholar] [CrossRef]
- Toubin, M. Améliorer la résilience urbaine par un diagnostic collaboratif: L’exemple des services urbains parisiens face à l’inondation. Encyclo. Rev. De L’école Dr. Sci. Des Sociétés ED 624 2014, 4, 165–167. [Google Scholar] [CrossRef]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef]
- Reghezza, M. Réflexions Autour de la Vulnérabilité Métropolitaine: La Métropole Parisienne Face au Risque de Crue Centennale. Ph.D. Thesis, Université de Nanterre-Paris X, Nanterre, France, 2006. [Google Scholar]
- Lhomme, S.; Serre, D.; Diab, Y.; Laganier, R. Analyzing resilience of urban net- works: A preliminary step towards more flood resilient cities. Nat. Hazards Earth Syst. Sci. 2013, 13, 221–230. [Google Scholar] [CrossRef]
- Dobson, M.; Smith, P.; Evans, H.; Chatterton, J. The Holistic Integrity Test (HIT)—Quantified resilience analysis. E3S Web Conf. 2016, 7, 08012. [Google Scholar] [CrossRef]
- Sayers, P.; Li, Y.; Galloway, G.; Penning-Rowsell, E.; Shen, F.; Wen, K.; Chen, Y.; Le Quesne, T. Flood Risk Management: A Strategic Approach; UNESCO: Paris, France, 2013. [Google Scholar]
- Holling, C. Engineering resilience versus ecological resilience. In Engineering Within Ecological Constraints; The National Academies Press: Washington, DC, USA, 1996; pp. 31–44. [Google Scholar] [CrossRef]
- Proag, V. The concept of vulnerability and resilience. Proc. Econ. Financ. 2014, 18, 369–376. [Google Scholar] [CrossRef]
- Andoh, R.Y.G.; Iwugo, K.O. Sustainable Urban Drainage Systems: A UK Perspective. In Global Solutions for Urban Drainage; American Society of Civil Engineers: Reston, VA, USA, 2002. [Google Scholar]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Change 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Aroca-Jiménez, E.; Bodoque, J.M.; García, J.A.; Díez-Herrero, A. A quantitative methodology for the assessment of the regional economic vulnerability to flash floods. J. Hydrol. 2018, 565, 386–399. [Google Scholar] [CrossRef]
- Liao, K.-H. A theory on urban resilience to floods. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Bahadur, A.V.; Ibrahim, M.; Tanner, T. The Resilience Renaissance? Unpacking of Resilience for Tackling Climate Change and Disasters. No. 45. Available online: https://www.researchgate.net/publication/275831843_The_Resilience_Renaissance_Unpacking_of_Resilience_for_Tackling_Climate_Change_and_Disasters_Brighton_IDS_SCR_Working_Paper (accessed on 18 July 2015).
- Carpenter, S.; Walker, B.; Anderies, J.M.; Abel, N. From metaphor to measurement: Resilience of what to what? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Chelleri, L. From the «Resilient City» to Urban Resilience. A review essay on understanding and integrating the resilience perspective for urban systems. Doc. Anàlisi Geogr. 2012, 58, 287. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. (Eds.) Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Vale, L.J.; Campanella, T.J. The Resilient City How Modern Cities Recover from Disaster; Oxford Academic: Oxford, UK, 2005. [Google Scholar]
- Zevenbergen, C. Flood Resilience. In Resource Guide on Resilience; EPFL International Risk Governance Center: Lausanne, Switzerland, 2016; v29-07-2016. [Google Scholar]
- Fuchs, S.; Thaler, T. (Eds.) Vulnerability and Resilience to Natural Hazards; Cambridge University Press: New York, NY, USA, 2018. [Google Scholar]
- National Research Council. Disaster Resilience: A National Imperative; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Leon, A.; Tang, Y.; Chen, D.; Yolcu, A.; Glennie, C.; Penings, S. Dynamic management of water storage for flood control in a wetland system: A case study in Texas. Water 2018, 10, 325. [Google Scholar] [CrossRef]
- Leon, A.S.; Tang, Y.; Qin, L.; Chen, D. A MATLAB framework for forecasting optimal flow releases in a multi-storage system for flood control. Environ. Model. Softw. 2020, 125, 104618. [Google Scholar] [CrossRef]
- Tang, Y.; Leon, A.; Kavvas, M.L. Impact of dynamic storage management of wetlands and shallow ponds on watershed-scale flood control. Water Resour. Manag. 2020, 34, 1305–1318. [Google Scholar] [CrossRef]
- Flotemersch, J.; Leibowitz, S.; Hill, R.; Stoddard, J.; Thomas, M.; Tharme, R. A watershed integrity definition and assessment approach to support strategic management of watersheds. River Res. Appl. 2016, 32, 1654–1671. [Google Scholar] [CrossRef]
- Kusler, J. Multi-Objective Wetland Restoration in Watershed Contexts. 2004. Available online: https://www.nawm.org/pdf_lib/restoration.pdf (accessed on 1 November 2004).
- Huang, G.; Li, D.; Zhu, X.; Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 2021, 74, 103210. [Google Scholar] [CrossRef]
- Glaus, A.; Mosimann, M.; Röthlisberger, V.; Ingold, K. How flood risks shape policies: Flood exposure and risk perception in Swiss municipalities. Reg. Environ. Change 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Nordbeck, R.; Löschner, L.; Pelaez Jara, M.; Pregernig, M. Exploring Science–Policy Interactions in a Technical Policy Field: Climate Change and Flood Risk Management in Austria, Southern Germany, and Switzerland. Water 2019, 11, 1675. [Google Scholar] [CrossRef]
- Haque, E.C.; Azad, A.K.M.; Choudhury, M. Discourse of Flood Management Approaches and Policies in Bangladesh: Mapping the Changes, Drivers, and Actors. Water 2019, 11, 2654. [Google Scholar] [CrossRef]
- Qin, L.; Leon, A.; Bian, L.; Dong, L.; Verma, V.; Yolcu, A. A remotely-operated siphon system for water release from wetlands and shallow ponds. IEEE Access 2019, 7, 157680–157687. [Google Scholar] [CrossRef]
- Vivek, V.; Bian, L.; Leon, A. A Remotely Operated Software Defined Radio Based Framework to Release Water from a Network of Storage Units. In Proceedings of the World Environmental and Water Resources Congress 2022, Atlanta, GA, USA, 5–8 June 2022. [Google Scholar]
- Leon, A.S.; Bian, L.; Tang, Y. Comparison of the genetic algorithm and pattern search methods for forecasting optimal flow releases in a multi-storage system for flood control. Environ. Model. Softw. 2021, 145, 105198. [Google Scholar] [CrossRef]
- Bian, L.; Assefa, M.; Leon, A.; Verma, V.; Yin, Z. A Deterministic Topographic Wetland Index Based on LiDAR-Derived DEM for Delineating Open-Water Wetlands. Water 2021, 13, 2487. [Google Scholar] [CrossRef]
- Einhäupl, P.; Krook, J.; Svensson, N.; Acker, K.V.; Passel, S.V. Eliciting stakeholder needs—An anticipatory approach assessing enhanced landfill mining. Waste Manag. 2019, 98, 113–125. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Ng, S.T.; Wang, L.; Wang, T. A methodology for assessing supply-demand matching of smart government services from citizens’ perspective: A case study in Nanjing, China. Habitat Int. 2023, 138, 102880. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Yu, L.; Yang, D.; Wang, Y. Factors affecting sustainability of smart city services in China: From the perspective of citizens’ sense of gain. Habitat Int. 2022, 128, 102645. [Google Scholar] [CrossRef]
- Huang, D.; Huang, G.; Zhang, G.; Wang, J. Driving factors of total carbon emissions from the construction industry in Jiangsu Province, China. J. Clean. Prod. 2020, 276, 123179. [Google Scholar]
- Rogge, K.S.; Reichardt, K. Policy mixes for sustainability transitions: An extended concept and framework for analysis. Res. Policy 2016, 45, 1620–1635. [Google Scholar] [CrossRef]
- Taylor, C.M.; Gallagher, E.A.; Pollard, S.J.; Rocks, S.A.; Smith, H.M.; Leinster, P.; Angus, A. Environmental regulation in transition: Policy officials’ views of regulatory instruments and their mapping to environmental risks. Sci. Total Environ. 2019, 646, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Shang, X.; Huang, G.; Zhou, S.; Zhang, M.; Feng, H. Can Smart City Construction Enhance Citizens’ Perception of Safety? A Case Study of Nanjing, China. Soc. Indic. Res. 2024, 171, 937–965. [Google Scholar] [CrossRef]
- Heinzlef, C.; Becue, V.; Serre, D. Operationalizing urban resilience to floods in embanked territories—Application in Avignon, Provence Alpes Côte d’azur region. Saf. Sci. 2019, 118, 181–193. [Google Scholar] [CrossRef]
- Li, D.; Huang, G.; Zhu, S.; Chen, L.; Wang, J. How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province. Renew. Sustain. Energy Rev. 2021, 144, 110953. [Google Scholar] [CrossRef]
Rainfall Event | Simulation Period | Category | Hydrologic Simulation | ||
---|---|---|---|---|---|
Hydrological Simulation | |||||
2014 Event | 1 May | − | 30 June | Medium Event | Calibration Event |
2015 Event | 1 May | 30 June | |||
2016 Event | 1 March | 30 April | Extreme Event | Validation Event | |
2017 Event | 1 August | 30 September | |||
Hydraulic Simulation | |||||
2014 Event | 22 May | − | 31 May | Medium Event | Calibration Event |
2015 Event | 20 May | 31 May | |||
2016 Event | 14 April | 27 April | Extreme Event | Validation Event | |
2017 Event | 21 August | 31 August |
USGS ID | 08068720 | 08068740 | 08068800 | 08068780 | 08069000 |
Latitude | 29°57′00″ | 29°57′32″ | 29°58′24″ | 30°00′57″ | 30°02′08″ |
Longitude | 95°48′29″ | 95°43′03″ | 95°35′54″ | 95°41′50″ | 95°25′43″ |
Location | Upstream | Midstream | Midstream | Midstream | Downstream |
Drainage Area | 284.8 km2 | 339.2 km2 | 554.2 km2 | 106.2 km2 | 738.1 km2 |
Stream | Cypress | Cypress | Cypress | Little Cypress | Cypress |
Performance Rating | R2 | NSE | RSR | PBIAS | ||||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | |
Very Good | 0.65 | 1.00 | 0.65 | 1.00 | 0.00 | 0.60 | −15 | +15 |
Good | 0.55 | 0.65 | 0.55 | 0.65 | 0.60 | 0.70 | [−20, −15) | (+15, +20] |
Satisfactory | 0.40 | 0.55 | 0.40 | 0.55 | 0.70 | 0.80 | [−30, −20) | (+20, +30] |
Unsatisfactory | 0.00 | 0.40 | - | 0.40 | 0.80 | - | (−∞, −30) | (+30, +∞) |
USGS Station | RSR | NSE | PBIAS | R2 |
---|---|---|---|---|
2014 Calibration Event | ||||
08068720 | 0.38 | 0.86 | 24.90 | 0.91 |
08068740 | 0.30 | 0.91 | 18.72 | 0.94 |
08068800 | 0.27 | 0.93 | 23.20 | 0.94 |
08068780 | 0.32 | 0.90 | 19.72 | 0.91 |
08069000 | 0.46 | 0.79 | −7.98 | 0.79 |
2015 Calibration Event | ||||
08068720 | 0.47 | 0.78 | −16.16 | 0.79 |
08068740 | 0.40 | 0.84 | −1.96 | 0.84 |
08068800 | 0.38 | 0.85 | 5.47 | 0.86 |
08068780 | 0.47 | 0.78 | −16.58 | 0.79 |
08069000 | 0.46 | 0.79 | −3.81 | 0.79 |
2016 Calibration Event | ||||
08068720 | 0.52 | 0.73 | 8.69 | 0.78 |
08068740 | 0.48 | 0.77 | 17.99 | 0.81 |
08068800 | 0.30 | 0.91 | 19.03 | 0.82 |
08068780 | 0.54 | 0.71 | 23.94 | 0.72 |
08069000 | 0.28 | 0.92 | −3.80 | 0.93 |
2017 Validation Event | ||||
08068720 | 0.57 | 0.68 | 24.83 | 0.81 |
08068740 | 0.34 | 0.88 | 6.03 | 0.87 |
08068800 | 0.27 | 0.93 | 12.08 | 0.92 |
08068780 | 0.33 | 0.89 | −2.73 | 0.91 |
08069000 | 0.37 | 0.86 | 12.06 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Bian, L.; Leon, A.S.; Yin, Z.; Hu, B. Integrating Policy Instruments for Enhanced Urban Resilience: A Machine Learning and IoT-Based Approach to Flood Mitigation. Water 2024, 16, 3364. https://doi.org/10.3390/w16233364
Wang L, Bian L, Leon AS, Yin Z, Hu B. Integrating Policy Instruments for Enhanced Urban Resilience: A Machine Learning and IoT-Based Approach to Flood Mitigation. Water. 2024; 16(23):3364. https://doi.org/10.3390/w16233364
Chicago/Turabian StyleWang, Lili, Linlong Bian, Arturo S. Leon, Zeda Yin, and Beichao Hu. 2024. "Integrating Policy Instruments for Enhanced Urban Resilience: A Machine Learning and IoT-Based Approach to Flood Mitigation" Water 16, no. 23: 3364. https://doi.org/10.3390/w16233364
APA StyleWang, L., Bian, L., Leon, A. S., Yin, Z., & Hu, B. (2024). Integrating Policy Instruments for Enhanced Urban Resilience: A Machine Learning and IoT-Based Approach to Flood Mitigation. Water, 16(23), 3364. https://doi.org/10.3390/w16233364