The Ecological Implication of Microplastic in Crabs from a Tropical Lagoon: Ingested Microplastic in Mud Crab Scylla serrata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Locations
2.2. Sample Collection, Preparation, and Digestion
2.3. Quality Control
2.4. Sample Filtration and Microscopic Analysis
2.5. Micro FTIR Analysis
2.6. Statistical Analysis
3. Results
3.1. MP Abundance in Mud Crab at Different Locations
3.2. Abundance of MPs
3.3. Characteristics of MPs
3.3.1. Size of MPs
3.3.2. Types and Colours of MPs
3.4. Polymer Characterisation of MPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laskar, N.; Kumar, U. Plastics and microplastics: A threat to environment. Environ. Technol. Innov. 2019, 14, 100352. [Google Scholar] [CrossRef]
- Golwala, H.; Zhang, X.; Iskander, S.M.; Smith, A.L. Solid waste: An overlooked source of microplastics to the environment. Sci. Total Environ. 2021, 769, 144581. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Leng, Z.; Padhan, R.K.; Sreeram, A. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. J. Clean. Prod. 2018, 180, 682–688. [Google Scholar] [CrossRef]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; Omari, K.E.; et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef]
- Gourmelon, G. Global plastic production rises, recycling lags. Vital Signs 2015, 22, 91–95. [Google Scholar]
- Al-Sherrawi, M.H.; Edaan, I.M.; Al-Rumaithi, A.; Sotnik, S.; Lyashenko, V. Features of plastics in modern construction use. Int. J. Civ. Eng. Technol. 2018, 9, 975–984. [Google Scholar]
- Chauhan, V.; Kärki, T.; Varis, J. Review of natural filament-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2019, 35, 1169–1209. [Google Scholar] [CrossRef]
- Nelms, S.E.; Duncan, E.M.; Patel, S.; Badola, R.; Bhola, S.; Chakma, S.; Chowdhury, G.W.; Godley, B.J.; Haque, A.B.; Johnson, J.A.; et al. Riverine plastic pollution from fisheries: Insights from the Ganges River system. Sci. Total Environ. 2021, 756, 143305. [Google Scholar] [CrossRef]
- Dadzie, D.K.; Kaliluthin, A.K.; Kumar, D.R. Exploration of waste plastic bottles use in construction. Civ. Eng. J. 2020, 6, 2262–2272. [Google Scholar] [CrossRef]
- Norton, M. Tackling the challenge of packaging plastic in the environment. Chemistry 2020, 26, 7737–7739. [Google Scholar] [CrossRef] [PubMed]
- Vox, G.; Loisi, R.V.; Blanco, I.; Mugnozza, G.S.; Schettini, E. Mapping of agriculture plastic waste. Agric. Agric. Sci. Procedia 2016, 8, 583–591. [Google Scholar] [CrossRef]
- Jia, C.; Das, P.; Kim, I.; Yoon, Y.; Tay, C.Y.; Lee, J. Applications, treatments, and reuse of plastics from electrical and electronic equipment. J. Ind. Eng. Chem./J. Ind. Eng. Chem.—Korean Soc. Ind. Eng. Chem. 2022, 110, 84–99. [Google Scholar] [CrossRef]
- Verma, R.; Vinoda, K.; Papireddy, M.; Gowda, A. Toxic Pollutants from Plastic Waste—A Review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philosophical Transactions—Royal Society. Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef]
- Leruste, A.; Malet, N.; Munaron, D.; Derolez, V.; Hatey, E.; Collos, Y.; De Wit, R.; Bec, B. First steps of ecological restoration in Mediterranean lagoons: Shifts in phytoplankton communities. Estuar. Coast. Shelf Sci. 2016, 180, 190–203. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Rathnayaka, V.L.; Amarathunga, A.A.D.; Jayasiri, H.B.; Liyanage, H.D. Microplastics Contamination in Selected Beaches of Sri Lanka. In Proceedings of the First Research Symposium, Edinburgh, UK, 16–21 June 2019; The Ocean University of Sri Lanka: Colombo, Sri Lanka, 2019. [Google Scholar]
- Sujeewani, S.A.S.; Amarathunga, A.A.D.; Dahanayaka, D.D.G.L. Assessment of marine litter in selected beaches of southern and western part of Sri Lanka. In Proceedings of the Second Research Symposium, Padang, Indonesia, 30–31 October 2020; The Ocean University of Sri Lanka: Colombo, Sri Lanka, 2020. [Google Scholar]
- Yang, Z.; Zhu, L.; Liu, J.; Cheng, Y.; Waiho, K.; Chen, A.; Wang, Y. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis. Sci. Total Environ. 2022, 829, 154586. [Google Scholar] [CrossRef]
- Lin, Z.; Jin, T.; Zou, T.; Xu, L.; Xi, B.; Xu, D.; He, J.; Xiong, L.; Tang, C.; Peng, J.; et al. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environ. Pollut. 2022, 304, 119159. [Google Scholar] [CrossRef]
- Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; De La Rosa, J.R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process. J. Hazard. Mater. 2020, 395, 122632. [Google Scholar] [CrossRef]
- Sukhsangchan, R.; Keawsang, R.; Worachananant, S.; Thamrongnawasawat, T.; Phaksopa, J. Suspended microplastics during a tidal cycle in sea-surface waters around Chao Phraya River mouth, Thailand. ScienceAsia 2020, 46, 724. [Google Scholar] [CrossRef]
- Sarno, A.; Olafsen, K.; Kubowicz, S.; Karimov, F.; Sait, S.T.L.; Sørensen, L.; Booth, A.M. Accelerated hydrolysis method for producing partially degraded polyester microplastic filament reference materials. Environ. Sci. Technol. Lett. 2020, 8, 250–255. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Sanchez, A.; Purca, S.; Indacochea, A.G. Microplastic Presence in the Mangrove Crab Ucides occidentalis (Brachyura: Ocypodidae) (Ortmann, 1897) Derived from Local Markets in Tumbes, Peru. Air Soil Water Res. 2022, 15, 117862212211245. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Multisanti, C.R.; Merola, C.; Perugini, M.; Aliko, V.; Faggio, C. Sentinel species selection for monitoring microplastic pollution: A review on one health approach. Ecol. Indic. 2022, 145, 109587. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Velázquez, D.; Edo, C.; Carretero, O.; Gago, J.; Barón-Sola, Á.; Hernández, L.E.; Yousef, I.; Quesada, A.; Leganés, F.; et al. Filaments spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. Sci. Total Environ. 2020, 722, 137904. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef]
- Issac, M.N.; Kandasubramanian, B. Effect of microplastics in water and aquatic systems. Environ. Sci. Pollut. Res. Int. 2021, 28, 19544–19562. [Google Scholar] [CrossRef]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 14947. [Google Scholar] [CrossRef]
- Löder, M.G.J.; Gerdts, G. Methodology used for the Detection and Identification of Microplastics—A critical appraisal. In Marine Anthropogenic Litter; Springer: Berlin/Heidelberg, Germany, 2015; pp. 201–227. [Google Scholar] [CrossRef]
- Sewwandi, M.; Amarathunga, A.A.D.; Wijesekara, H.; Mahatantila, K.; Vithanage, M. Beach sand pollution and distribution of buried microplastics ensuing the MV X-Press Pearl maritime disaster in Sri Lankan Sea. Mar. Pollut. Bull. 2022, 184, 114074. [Google Scholar] [CrossRef] [PubMed]
- Sul, J.A.I.D.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef]
- Peters, C.A.; Bratton, S.P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environ. Pollut. 2016, 210, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Adomat, Y.; Grischek, T. Sampling and processing methods of microplastics in river sediments—A review. Sci. Total Environ. 2021, 758, 143691. [Google Scholar] [CrossRef]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef]
- Lahiru, A.A.S.; Amarathunga, A.A.D.; Malavipathirana, S.; De Silva, D.S.M.; Sivyer, D.B. Assessment of litter and microplastic pollution in the water and sediment of Hirikatuoya stream, within the Walawe River basin, Sri Lanka. In Proceedings of the International Conference on Applied and Pure Sciences, Colombo, Sri Lanka, 13 October 2023; Available online: http://repository.kln.ac.lk/handle/123456789/26855 (accessed on 13 October 2023).
- Wang, T.; Zhao, S.; Zhu, L.; McWilliams, J.C.; Galgani, L.; Amin, R.M.; Nakajima, R.; Jiang, W.; Chen, M. Accumulation, transformation and transport of microplastics in estuarine fronts. Nat. Rev. Earth Environ. 2022, 3, 795–805. [Google Scholar] [CrossRef]
- Gupta, P.; Saha, M.; Rathore, C.; Suneel, V.; Ray, D.; Naik, A.; K, U.; M, D.; Daga, K. Spatial and seasonal variation of microplastics and possible sources in the estuarine system from central west coast of India. Environ. Pollut. 2021, 288, 117665. [Google Scholar] [CrossRef]
- Arachchi, S.N.U.; Jayasiri, H.B.; Amarathunga, A.A.D. Occurrence of microplastics in fish from the Gin River estuary and associated waters, SriLanka. In Proceedings of the 1st International Symposium on Microplastics Pollution—SYMP 2024, Peradeniya, SriLanka, 23–27 September 2024. [Google Scholar]
- Toumi, H.; Abidli, S.; Bejaoui, M. Microplastics in freshwater environment: The first evaluation in sediments from seven water streams surrounding the lagoon of Bizerte (Northern Tunisia). Environ. Sci. Pollut. Res. Int. 2019, 26, 14673–14682. [Google Scholar] [CrossRef]
- Bruschi, R.; Pastorino, P.; Barceló, D.; Renzi, M. Microplastic levels and sentinel species used to monitor the environmental quality of lagoons: A state of the art in Italy. Ecol. Indic. 2023, 154, 110596. [Google Scholar] [CrossRef]
- Schmidt, N.; Thibault, D.; Galgani, F.; Paluselli, A.; Sempéré, R. Occurrence of microplastics in surface waters of the Gulf of Lion (NW Mediterranean Sea). Prog. Oceanogr./Prog. Oceanogr. 2018, 163, 214–220. [Google Scholar] [CrossRef]
- Yu, F.; Pei, Y.; Zhang, X.; Wu, X.; Zhang, G.; Ma, J. Occurrence and distribution characteristics of aged microplastics in the surface water, sediment, and crabs of the aquaculture pond in the Yangtze River Delta of China. Sci. Total Environ. 2023, 871, 162039. [Google Scholar] [CrossRef]
- Sruthy, S.; Ramasamy, E. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environ. Pollut. 2017, 222, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Liao, H.; Yang, F.; Sun, F.; Guo, Y.; Yang, H.; Feng, D.; Zhou, X.; Wang, Q. Review of microplastics in lakes: Sources, distribution characteristics, and environmental effects. Carbon Res. 2023, 2, 25. [Google Scholar] [CrossRef]
- Garcés-Ordóñez, O.; Espinosa, L.F.; Muniz, M.C.; Pereira, L.B.S.; Anjos, R.M.D. Abundance, distribution, and characteristics of microplastics in coastal surface waters of the Colombian Caribbean and Pacific. Environ. Sci. Pollut. Res. Int. 2021, 28, 43431–43442. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, M.V.; Molinero, J.; Moulatlet, G.M.; Barrado, M.; Prado-Alcívar, S.; Cabrera, M.; Gimiliani, G.; Ñacato, C.; Pinos-Velez, V.; Cipriani-Avila, I. Microplastics in rivers and coastal waters of the province of Esmeraldas, Ecuador. Mar. Pollut. Bull. 2021, 173, 113067. [Google Scholar] [CrossRef]
- Laglbauer, B.J.; Franco-Santos, R.M.; Andreu-Cazenave, M.; Brunelli, L.; Papadatou, M.; Palatinus, A.; Grego, M.; Deprez, T. Macrodebris and microplastics from beaches in Slovenia. Mar. Pollut. Bull. 2014, 89, 356–366. [Google Scholar] [CrossRef]
- Chubarenko, I.; Esiukova, E.; Bagaev, A.; Bagaeva, M.; Grave, A. Three-dimensional distribution of anthropogenic microparticles in the body of sandy beaches. Sci. Total Environ. 2018, 628–629, 1340–1351. [Google Scholar] [CrossRef]
- Weerasekara, P.G.Y.W.; De Silva, D.S.M.; De Silva, R.C.L.; Amarathunga, A.A.D.; Bakir, A.; McGoran, A.R.; Sivyer, D.B.; Reeve, C. Sampling and analysis of microplastics in the coastal environments of Sri Lanka: Estuaries of the Kelani River to Mahaoya. Water 2024, 16, 1932. [Google Scholar] [CrossRef]
- Suwandhahannadi, W.K.; Amarathunga, A.A.D.; Dahanayaka, D.D.G.L. Composition, Density and Diversity of Plankton in Malala Lagoon, Southern Sri Lanka. In Proceedings of the Twenty Sixth Scientific Sessions of the Sri Lanka Association for Fisheries and Aquatic Resources (SLAFAR), Peradeniya, Sri Lanka, 10 December 2020; Science Faculty, University of Kelaniya: Peradeniya, Sri Lanka, 2020. [Google Scholar]
- Rodrigues-Filho, J.L.; Macêdo, R.L.; Sarmento, H.; Pimenta, V.R.A.; Alonso, C.; Teixeira, C.R.; Pagliosa, P.R.; Netto, S.A.; Santos, N.C.L.; Daura-Jorge, F.G.; et al. From ecological functions to ecosystem services: Linking coastal lagoons biodiversity with human well-being. Hydrobiologia 2023, 850, 2611–2653. [Google Scholar] [CrossRef]
- Amarathunga, D.; Madhumage, S.; Jayanatha, S.; Wikramaarachchi, N. Assessment of pollution status with reference to physico-chemical characteristics in Panama Lagoon, Sri Lanka. In Coastal and Marine Environment; Ocean University of Sri Lanka: Colombo, Sri Lanka, 2021; p. 35. [Google Scholar]
- Yáñez-Arancibia, A.; Day, J.W.; Sánchez-Gil, P.; Day, J.N.; Lane, R.R.; Zárate-Lomelí, D.; Vásquez, H.A.; Rojas-Galaviz, J.L.; Ramírez-Gordillo, J. Ecosystem functioning: The basis for restoration and management of a tropical coastal lagoon, Pacific coast of Mexico. Ecol. Eng. 2014, 65, 88–100. [Google Scholar] [CrossRef]
- Amarathunga, A.A.D.; Sureshkumar, N. Assessment of water quality of major streams in the Madu Ganga catchment and pollution loads draining into Madu Ganga from its own catchment. J. Natl. Aquat. Resour. Res. Dev. Agency 2013, 42, 27–46. [Google Scholar]
- Newton, A.; Brito, A.; Icely, J.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.; Lillebø, A.; Sousa, A.; et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Inácio, M.; Barboza, F.R.; Villoslada, M. The protection of coastal lagoons as a nature-based solution to mitigate coastal floods. Curr. Opin. Environ. Sci. Health 2023, 34, 100491. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Marcos, C. Fisheries in coastal lagoons: An assumed but poorly researched aspect of the ecology and functioning of coastal lagoons. Estuar. Coast. Shelf Sci. 2012, 110, 15–31. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Pérez-Ruzafa, I.M.; Newton, A.; Marcos, C. Coastal lagoons: Environmental variability, ecosystem complexity, and goods and services uniformity. In Coasts and Estuaries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–276. [Google Scholar] [CrossRef]
- Adeli, A.; Bolster, C.H.; Rowe, D.E.; McLaughlin, M.R.; Brink, G.E. Effect of Long-Term Swine Effluent Application on Selected Soil Properties. Soil Sci. 2008, 173, 223–235. [Google Scholar] [CrossRef]
- Joseph, L. Fisheries and Environmental Profile of Negombo Lagoon, Sri Lanka: A Literature Review; Regional Fisheries Livelihoods Programme for South and Southeast Asia (GCP/RAS/237/SPA) Field Project Document 2011/LKA/CM/04; FAO: Rome, Italy, 2011. [Google Scholar]
- Ekanayaka, E.M.M.I.; Madhushankha, P.D.S.; Dissanayake, D.C.T. By-catch from the Artisanal Shrimp Trawl Fishery off Negombo, Sri Lanka. J. Indian Soc. Coast. Agric. Res. 2021, 39, 95. [Google Scholar] [CrossRef]
- Kanchana, C.M.; Chandrasekara, N.K.; Weerasinghe, K.D.N.; Pathirana, S.; Piyadasa, R.U.K. Heavy Metal, Oil and Grease Pollution of water and sediments in estuarine lagoons in Sri Lanka: A case study in Negombo Estuarine Lagoon. In Multi-Hazard Early Warning and Disaster Risks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 429–442. [Google Scholar] [CrossRef]
- Amarathunga, A.A.D.; Maddumage, M.D.S.R.; Narangoda, S.C.R.N.K.; Rupasinghe, D.D.T.; Jayawardana, J.K.P.C.; Pemarathne, S.K.S. Microplastic contamination on selected beaches in Sri Lankan coastline due to X-Press Pearl ship disaster. In Proceedings of the National Aquatic Resources Research and Development Agency (NARA), Scientific Sessions 2022, Colombo, Sri Lanka, 21 October 2022. [Google Scholar]
- Athukorala, A.; Amarathunga, A.; De Silva, D.; Bakir, A.; McGoran, A.; Sivyer, D.; De Silva, R. Microplastics in Lagoon Ecosystems: A review on occurrence and methods for microplastic detection. Biol. Environ. Proc. R. Ir. Acad. 2023, 123, 121–135. [Google Scholar] [CrossRef]
- Çullu, A.F.; Sönmez, V.Z.; Sivri, N. Microplastic contamination in surface waters of the Küçükçekmece Lagoon, Marmara Sea (Turkey): Sources and areal distribution. Environ. Pollut. 2021, 268, 115801. [Google Scholar] [CrossRef]
- Silva, P.H.E.; De Sousa, F.D. Microplastic pollution of Patos Lagoon, south of Brazil. Environ. Chall. 2021, 4, 100076. [Google Scholar] [CrossRef]
- Olarinmoye, O.M.; Stock, F.; Scherf, N.; Whenu, O.; Asenime, C.; Ganzallo, S. Microplastic presence in sediment and water of a lagoon bordering the urban agglomeration of Lagos, southwest Nigeria. Geosciences 2020, 10, 494. [Google Scholar] [CrossRef]
- Kanishka, W.A.; Amarathunga, A.A.D.; De Silva, D.S.M.; Bakir, A.; McGoran, A.; Sivyer, D.B.; Narangoda, S.R.C. Microplastic contaminations in Mangrove Ecosystem in Negombo Lagoon, Sri Lanka. In Proceedings of the 16th International Conference on the Environmental Effects of Nanoparticles, Plymouth, UK, 5–8 September 2023. [Google Scholar]
- Rathnayake, R.M.L.I.; Amarathunga, A.A.D.; De Silva, D.S.M.; Bakir, A.; McGoran, A.; Narangoda, C.; Sivyer, D.B. Accumulation of Microplastics in Macrophytes of Negombo lagoon, Sri Lanka. In Proceedings of the 16th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, Plymouth, UK, 5–8 September 2023; p. 48. [Google Scholar]
- Chico-Ortiz, N.; Mahu, E.; Crane, R.; Gordon, C.; Marchant, R. Microplastics in Ghanaian coastal lagoon sediments: Their occurrence and spatial distribution. Reg. Stud. Mar. Sci. 2020, 40, 101509. [Google Scholar] [CrossRef]
- Näkki, P.; Setälä, O.; Lehtiniemi, M. Bioturbation transports secondary microplastics to deeper layers in soft marine sediments of the northern Baltic Sea. Mar. Pollut. Bull. 2017, 119, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Hettige, N.D.; Amarathunga, A.A.D.; Narangoda, S.R.C.N.K.; Madduamge, M.D.S.R.; Weerasekara, K.A.W.S. Assessment Current Status of Water Quality in Madu Ganga Lagoon: A Ramsar Wetland in Sri Lanka; NARA: Colombo, Sri Lanka, 2017; Available online: http://www.erepository.nara.ac.lk/handle/1/957 (accessed on 13 October 2023).
- Kooi, M.; Van Nes, E.H.; Scheffer, M.; Koelmans, A.A. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics. Environ. Sci. Technol. 2017, 51, 7963–7971. [Google Scholar] [CrossRef] [PubMed]
- Gunaalan, K.; Almeda, R.; Vianello, A.; Lorenz, C.; Iordachescu, L.; Papacharalampos, K.; Nielsen, T.G.; Vollertsen, J. Does water column stratification influence the vertical distribution of microplastics? Environ. Pollut. 2024, 340, 122865. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, C.; Vandenberghe, M.; Pagano, M.; Pellet, I.; Pinazo, C.; Onrubia, J.A.T.; Guilloux, L.; Carlotti, F. Investigation of dynamic change in microplastics vertical distribution patterns: The seasonal effect on vertical distribution. Mar. Pollut. Bull. 2023, 189, 114674. [Google Scholar] [CrossRef]
- Rypina, I.I.; Pratt, L.J.; Dotzel, M. Aggregation of slightly buoyant microplastics in 3D vortex flows. Nonlinear Process. Geophys. 2024, 31, 25–44. [Google Scholar] [CrossRef]
- Choy, C.A.; Robison, B.H.; Gagne, T.O.; Erwin, B.; Firl, E.; Halden, R.U.; Hamilton, J.A.; Katija, K.; Lisin, S.E.; Rolsky, C.; et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 2019, 9, 7843. [Google Scholar] [CrossRef]
- Badylak, S.; Phlips, E.; Batich, C.; Jackson, M.; Wachnicka, A. Polystyrene microplastic contamination versus microplankton abundances in two lagoons of the Florida Keys. Sci. Rep. 2021, 11, 6029. [Google Scholar] [CrossRef]
- Ramasamy, R.; Murugan, M. Microplastics: Distribution, Isolation, Detection, and Effects on Flora and Fauna: A Mini Review. World J. Environ. Biosci. 2022, 11, 1–8. [Google Scholar] [CrossRef]
- Gerstenbacher, C.M.; Finzi, A.C.; Rotjan, R.D.; Novak, A.B. A review of microplastic impacts on seagrasses, epiphytes, and associated sediment communities. Environ. Pollut. 2022, 303, 119108. [Google Scholar] [CrossRef]
- Seng, N.; Lai, S.; Fong, J.; Saleh, M.F.; Cheng, C.; Cheok, Z.Y.; Todd, P.A. Early evidence of microplastics on seagrass and macroalgae. Mar. Freshw. Res. 2020, 71, 922. [Google Scholar] [CrossRef]
- Deng, H.; He, J.; Feng, D.; Zhao, Y.; Sun, W.; Yu, H.; Ge, C. Microplastics pollution in mangrove ecosystems: A critical review of current knowledge and future directions. Sci. Total Environ. 2021, 753, 142041. [Google Scholar] [CrossRef] [PubMed]
- John, J.; Nandhini, A.R.; Chellam, P.V.; Sillanpää, M. Microplastics in mangroves and coral reef ecosystems: A review. Environ. Chem. Lett. 2021, 20, 397–416. [Google Scholar] [CrossRef] [PubMed]
- Aliko, V.; Beqiraj, E.G.; Qirjo, M.; Cani, M.; Rama, A.; Bego, K.; Reka, A.; Faggio, C. Plastic invasion tolling: First evaluation of microplastics in water and two crab species from the nature reserve lagoonary complex of Kune-Vain, Albania. Sci. Total Environ. 2022, 849, 157799. [Google Scholar] [CrossRef]
- Horn, D.; Miller, M.; Anderson, S.; Steele, C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Mar. Pollut. Bull. 2019, 139, 231–237. [Google Scholar] [CrossRef]
- Keshavarzifard, M.; Vazirzadeh, A.; Sharifinia, M. Occurrence and characterization of microplastics in white shrimp, Metapenaeus affinis, living in a habitat highly affected by anthropogenic pressures, northwest Persian Gulf. Mar. Pollut. Bull. 2021, 169, 112581. [Google Scholar] [CrossRef]
- Lawan, P.L.M.J.H.; De Silva, D.S.M.; Amarathunga, A.A.D.; McGoran, A.; Bakir, A.; Sivyer, D.B.; Reeve, C. Microplastic Contamination in Shrimps from the Negombo Lagoon—Sri Lanka. Water 2024, 16, 447. [Google Scholar] [CrossRef]
- Cozzolino, L.; De Los Santos, C.B.; Zardi, G.I.; Repetto, L.; Nicastro, K.R. Microplastics in commercial bivalves harvested from intertidal seagrasses and sandbanks in the Ria Formosa lagoon, Portugal. Mar. Freshw. Res. 2021, 72, 1092–1099. [Google Scholar] [CrossRef]
- Baroja, E.; Christoforou, E.; Lindström, J.; Spatharis, S. Effects of microplastics on bivalves: Are experimental settings reflecting conditions in the field? Mar. Pollut. Bull. 2021, 171, 112696. [Google Scholar] [CrossRef]
- Nilaweera, C.O.W.; Jayasiri, H.B.; Amarathunga, A.A.D. Microplastics Abundance in Green mussels (Perna viridis) in Negombo and Kokkilai Lagoons in Sri Lanka. In Proceedings of the Aquatic Research for Prosperity of the Nation, the 5th Research Symposium of the Ocean University of Sri Lanka (5th RSOCUSL), Colombo, Sri Lanka, 23 November 2023. [Google Scholar]
- Waite, H.R.; Donnelly, M.J.; Walters, L.J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 2018, 129, 179–185. [Google Scholar] [CrossRef]
- Li, H.; Ma, L.; Lin, L.; Ni, Z.; Xu, X.; Shi, H.; Yan, Y.; Zheng, G.; Rittschof, D. Microplastics in oysters Saccostrea cucullata along the Pearl River Estuary, China. Environ. Pollut. 2018, 236, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Dada, O.A.; Bello, J.O. Microplastics in carnivorous fish species, water and sediments of a coastal urban lagoon in Nigeria. Environ. Sci. Pollut. Res. Int. 2023, 30, 55948–55957. [Google Scholar] [CrossRef] [PubMed]
- Foley, C.J.; Feiner, Z.S.; Malinich, T.D.; Höök, T.O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 2018, 631–632, 550–559. [Google Scholar] [CrossRef]
- Athukorala, A.; Amarathunga, A.A.D.; De Silva, D.S.M.; Bakir, A.; McGoran, A.; Sivyer, D.B.; De Silva, R.C.L.; Narangoda, C. Microplastic contamination in selected commercial fish species in Negombo Lagoon, Sri Lanka. In Proceedings of the International Conference on Applied and Pure Sciences, Kelaniya, Sri Lanka, 13 October 2023; Available online: http://repository.kln.ac.lk/handle/123456789/26856 (accessed on 13 October 2023).
- Sfriso, A.A.; Tomio, Y.; Rosso, B.; Gambaro, A.; Sfriso, A.; Corami, F.; Rastelli, E.; Corinaldesi, C.; Mistri, M.; Munari, C. Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environ. Int. 2020, 137, 105587. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Martins, M.; Sobral, P.; Costa, P.M.; Costa, M.H. An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel. Environ. Pollut. 2019, 245, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Nel, H.A.; Dalu, T.; Wasserman, R.J. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Sci. Total Environ. 2018, 612, 950–956. [Google Scholar] [CrossRef]
- Mohsen, M.; Lin, C.; Liu, S.; Yang, H. Existence of microplastics in the edible part of the sea cucumber Apostichopus japonicus. Chemosphere 2022, 287, 132062. [Google Scholar] [CrossRef]
- Egbeocha, C.; Malek, S.; Emenike, C.; Milow, P. Feasting on microplastics: Ingestion by and effects on marine organisms. Aquat. Biol. 2018, 27, 93–106. [Google Scholar] [CrossRef]
- Brennecke, D.; Ferreira, E.C.; Costa, T.M.; Appel, D.; Da Gama, B.A.; Lenz, M. Ingested microplastics (>100 μm) are translocated to organs of the tropical fiddler crab Uca rapax. Mar. Pollut. Bull. 2015, 96, 491–495. [Google Scholar] [CrossRef]
- McGoran, A.R.; Clark, P.F.; Smith, B.D.; Morritt, D. High prevalence of plastic ingestion by Eriocheir sinensis and Carcinus maenas (Crustacea: Decapoda: Brachyura) in the Thames Estuary. Environ. Pollut. 2020, 265, 114972. [Google Scholar] [CrossRef]
- Not, C.; Lui CY, I.; Cannicci, S. Feeding behavior is the main driver for microparticle intake in mangrove crabs. Limnol. Oceanogr. Lett. 2020, 5, 84–91. [Google Scholar] [CrossRef]
- Welden, N.A.; Cowie, P.R. Environment and gut morphology influence microplastic retention in langoustine, Nephrops norvegicus. Environ. Pollut. 2016, 214, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Wójcik-Fudalewska, D.; Normant-Saremba, M.; Anastácio, P. Occurrence of plastic debris in the stomach of the invasive crab Eriocheir sinensis. Mar. Pollut. Bull. 2016, 113, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, R.P.; Fernando, D.Y.; De Siha, O.S.S.C. Pond culture of mud crab in Sri Lanka. Mud crab 1991, 1, 30. [Google Scholar]
- Anas, M.; Edirisinghe, E.; Jayasinghe, J. Lipid composition and fatty acid profiles of wild caught and fattened mud crab, Scylla serrata in Sri Lanka. Sri Lanka J. Aquat. Sci. 2010, 14, 75–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Zhu, T.; Zhang, X.; Jin, M.; Jiao, L.; Meng, F.; Figueiredo-Silva, C.; Hong, Y.; Zhou, Q. Dietary chromium could improve growth, antioxidant capacity, chromium accumulation in tissues and expression of genes involved into glucose and lipid metabolism in juvenile mud crab Scylla paramamosain. Aquac. Rep. 2022, 23, 101088. [Google Scholar] [CrossRef]
- Aldon, E.T.; Dagoon, N.J. The Market for Mud Crab. 1997. Available online: http://hdl.handle.net/1834/35169 (accessed on 13 October 2023).
- Fang, F.; Yuan, Y.; Jin, M.; Zhang, Y.; Zhu, T.; Luo, J.; Yang, Z.; Guo, C.; Jiao, L.; Yan, X.; et al. Alteration of Growth Performance, Antioxidant Capacity, Tissue Fatty Acid Profiles, and Lipid Metabolism of Mud Crab (Scylla paramamosain) Juvenile in Response to Different Dietary Arachidonic Acid Levels. Aquac. Nutr. 2022, 2022, 6038613. [Google Scholar] [CrossRef]
- Jayamanne, S.C. Bionomics of the Mud Crab Fishery Scylla serrata. Ph.D. Thesis, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, 2015. [Google Scholar]
- Ministry of Fisheries. Fisheries Statistics. 2022. Available online: www.fisheries.gov.lk/ (accessed on 13 October 2023).
- Moghal, M.M.; Pradhan, V.; Ladniya, V. Studies on Crabs (Brachyura): A Review. J. Adv. Sci. Res. 2015, 6, 1–12. [Google Scholar]
- Leoville, A.; Lagarde, R.; Grondin, H.; Faivre, L.; Rasoanirina, E.; Teichert, N. Influence of environmental conditions on the distribution of burrows of the mud crab, Scylla serrata, in a fringing mangrove ecosystem. Reg. Stud. Mar. Sci. 2021, 43, 101684. [Google Scholar] [CrossRef]
- Webley, J.A.C. The Ecology of the Mud Crab (Scylla serrata): Their Colonisation of Estuaries and Role as Scavengers in Ecosystem Processes. Ph.D. Thesis, Griffith University, Brisbane, Australia, 2008. [Google Scholar] [CrossRef]
- Wilson, S.; Jeyasanta, K.I.; Patterson, J. Nutritional status of swimming crab portunus sanguinolentus (Herbst 1783). J. Aquat. Biol. Fish. 2016, 5, 191–202. [Google Scholar]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of Urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for Landscape Planning towards a Sustainable Urban Wetland Ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- Leistenschneider, C.; Burkhardt-Holm, P.; Mani, T.; Primpke, S.; Taubner, H.; Gerdts, G. Microplastics in the Weddell Sea (Antarctica): A Forensic Approach for Discrimination between Environmental and Vessel-Induced Microplastics. Environ. Sci. Technol. 2021, 55, 15900–15911. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.L.; Arueira, V.F.; Da Costa, M.F.; Di Beneditto, A.P.M.; Zalmon, I.R. Can the Atlantic ghost crab be a potential biomonitor of microplastic pollution of sandy beaches sediment? Mar. Pollut. Bull. 2019, 145, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, Y.; Liu, B.; Li, R. Full size microplastics in crab and fish collected from the mangrove wetland of Beibu Gulf: Evidences from Raman Tweezers (1–20 μm) and spectroscopy (20–5000 μm). Sci. Total Environ. 2021, 759, 143504. [Google Scholar] [CrossRef] [PubMed]
- Kleawkla, N. Microplastic Fragments in Stomach Content of Blue Swimming Crab, Portunus pelagicus from Wonnapha Coastal Wetland, Chonburi Province, Thailand. Ramkhamhaeng Int. J. Sci. Technol. 2019, 2, 7–16. [Google Scholar]
- Zhang, T.; Sun, Y.; Song, K.; Du, W.; Huang, W.; Gu, Z.; Feng, Z. Microplastics in different tissues of wild crabs at three important fishing grounds in China. Chemosphere 2021, 271, 129479. [Google Scholar] [CrossRef]
- Wu, F.; Wang, T.; Li, X.; Zhao, R.; He, F. Microplastic contamination in the dominant crabs at the intertidal zone of Chongming Island. Yangtze Estuary Sci. Total Environ. 2023, 896, 165258. [Google Scholar] [CrossRef]
- Athukorala, A.; Amarathunga, A.A.D.; De Silva, D.S.M.; Bakir, A.; McGoran, A.; Sivyer, D.B.; Narangoda, S.R.C. Occurrence and abundance of microplastics in surface waters and sediments from the Negombo Lagoon, Sri Lanka. In Proceedings of the 16th International Conference on the Environmental Effects of Nanoparticles, Plymouth, UK, 5–8 September 2023. [Google Scholar]
- Katupotha, K.N.J. Anthropogenic impacts on urban coastal lagoons in the Western and North-western coastal zones of Sri Lanka. ESOFT Metro Campus Int. J. 2014, 1, 39–56. [Google Scholar]
- Hsieh, H.; Chuang, M.; Shih, Y.; Weerakkody, W.S.; Huang, W.; Hung, C.; Muller, F.L.L.; Ranatunga, R.R.M.K.P.; Wijethunga, D.S. Eutrophication and hypoxia in tropical Negombo Lagoon, Sri Lanka. Front. Mar. Sci. 2021, 8, 678832. [Google Scholar] [CrossRef]
- Malawaraaratchi, R.N. A Study of the Negombo Lagoon with Respect to the Salinity Variation and Pollution of the Lagoon Water and Effects of Proposed Dredging Activities. Ph.D. Thesis, University of Moratuwa, Moratuwa, Sri Lanka, 2003. [Google Scholar]
- Bauer, R.T. Adaptive modification of appendages for grooming (cleaning, antifouling) and reproduction in the Crustacea. Functional morphology and diversity. Funct. Morphol. Divers. 2013, 1, 327–364. [Google Scholar]
- Nielsen, O.I.; Kristensen, E.; Macintosh, D.J. Impact of fiddler crabs (Uca spp.) on rates and pathways of benthic mineralization in deposited mangrove shrimp pond waste. J. Exp. Mar. Biol. Ecol. 2003, 289, 59–81. [Google Scholar] [CrossRef]
- Forgeron, S.J.; Quadros, A.F.; Zimmer, M. Crab-driven processing does not explain leaf litter deposition in mangrove crab burrows. Ecol. Evol. 2021, 11, 8856–8862. [Google Scholar] [CrossRef]
- Truchet, D.; Buzzi, N.; Negro, C.; Palavecino, C.; Mora, M.; Marcovecchio, J. Unraveling the depuration mechanisms of metals in the burrowing crab (Neohelice granulata Dana, 1852): Biochemical biomarkers, metal-rich granules and bioaccumulation patterns. Mar. Pollut. Bull. 2023, 196, 115638. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, T. Investigating a probable relationship between the distribution of microplastics and crab burrows in the intertidal zone of Chongming Island, Yangtze Estuary. Sci. Total Environ. 2022, 851, 158187. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Carretero, O.; Filgueiras, A.; Viñas, L. Synthetic microfilaments in the marine environment: A review on their occurrence in seawater and sediments. Mar. Pollut. Bull. 2018, 127, 365–376. [Google Scholar] [CrossRef]
- Acharya, S.; Rumi, S.S.; Hu, Y.; Abidi, N. Microfilaments from synthetic textiles as a major source of microplastics in the environment: A review. Text. Res. J. 2021, 91, 2136–2156. [Google Scholar] [CrossRef]
- Ory, N.; Chagnon, C.; Felix, F.; Fernández, C.; Ferreira, J.L.; Gallardo, C.; Ordóñez, O.G.; Henostroza, A.; Laaz, E.; Mizraji, R.; et al. Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Mar. Pollut. Bull. 2018, 127, 211–216. [Google Scholar] [CrossRef]
- Watts, A.J.R.; Lewis, C.; Goodhead, R.M.; Beckett, S.J.; Moger, J.; Tyler, C.R.; Galloway, T.S. Uptake and Retention of Microplastics by the Shore Crab Carcinus maenas. Environ. Sci. Technol. 2014, 48, 8823–8830. [Google Scholar] [CrossRef]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Shaikh, T.; Chaudhari, S.; Varma, A. Viscose rayon: A legendary development in the manmade textile. Int. J. Eng. Res. Appl. 2012, 2, 675–680. [Google Scholar]
- Parajuli, P.; Acharya, S.; Rumi, S.S.; Hossain, M.T.; Abidi, N. Regenerated cellulose in textiles: Rayon, lyocell, modal and other fibres. In Fundamentals of Natural Fibres and Textiles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–110. [Google Scholar] [CrossRef]
- Crooks, N.; Parker, H.; Pernetta, A.P. Brain food? Trophic transfer and tissue retention of microplastics by the velvet swimming crab (Necora puber). J. Exp. Mar. Biol. Ecol. 2019, 519, 151187. [Google Scholar] [CrossRef]
- Watts, A.J.R.; Urbina, M.A.; Goodhead, R.; Moger, J.; Lewis, C.; Galloway, T.S. Effect of Microplastic on the Gills of the Shore Crab Carcinus maenas. Environ. Sci. Technol. 2016, 50, 5364–5369. [Google Scholar] [CrossRef] [PubMed]
- Walkinshaw, C.; Lindeque, P.K.; Thompson, R.; Tolhurst, T.; Cole, M. Microplastics and seafood: Lower trophic organisms at highest risk of contamination. Ecotoxicol. Environ. Saf. 2020, 190, 110066. [Google Scholar] [CrossRef] [PubMed]
- Villegas, L.; Cabrera, M.; Moulatlet, G.M.; Capparelli, M. The synergistic effect of microplastic and malathion exposure on fiddler crab Minuca ecuadoriensis microplastic bioaccumulation and survival. Mar. Pollut. Bull. 2022, 175, 113336. [Google Scholar] [CrossRef]
- Cverenkárová, K.; Valachovičová, M.; Mackul’ak, T.; Žemlička, L.; Bírošová, L. Microplastics in the food chain. Life 2021, 11, 1349. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
Location | L1 | L2 | L3 | L4 | L5 |
---|---|---|---|---|---|
Sample size (n) | 20 | 20 | 20 | 20 | 20 |
Average net weight of crabs (g) ± SD | 169.32 ± 79.09 | 132.17 ± 74.62 | 149.85 ± 62.42 | 142.85 ± 49.01 | 151.57 ± 71.70 |
Average cephalothorax width of crabs (mm) ± SD | 69.35 ± 11.74 | 65.8 ± 9.71 | 67.95 ± 9.53 | 67.25 ± 7.69 | 68.10 ± 11.51 |
Average cephalothorax length of crabs (mm) ± SD | 100.82 ± 19.36 | 94.15 ± 14.2 | 97.15 ± 12.02 | 98.95 ± 19.92 | 96.45 ± 14.27 |
Mean abundance (item/grams) ± SD | 0.07 ± 0.03 | 0.10 ± 0.04 | 0.09 ± 0.05 | 0.08 ± 0.05 | 0.08 ± 0.04 |
Mean abundance (item/individual) ± SD | 11.15 ± 5.10 | 11.15 ± 5.10 | 12.50 ± 7.40 | 11.30 ± 8.10 | 10.60 ± 4.60 |
Name of Species | The Main Size of MPs in Gills and GIT | The Main Colour of MP (GIT) | The Main Colour of MP (Gills) | The Main Type of MP in Gills and GIT | Total Number of MPs | Items/Individual | Study Area | References |
---|---|---|---|---|---|---|---|---|
MP Abundance | ||||||||
Mangrove Crab, Ucides occidentalis | 0.002–0.25 mm | Clear | Clear | Filament | 921 | 11.35 ± 7.91 | Local Markets in Tumbes, Peru | Aguirre-Sanchez et al., 2022 [26] |
Ghost Crab, Ocypode quadrata | NA | Black and Blue | NA | Filament | NA | 1 to 158 | Grussai Beach Arch, Brazil | Costa et al., 2019 [123] |
C. maenas and E. sinensis | 2.1–3.0 mm | Clear | Clear | Filament | 874 | 1 ± 0.82–11.35 ± 7.91 | Thames Estuary at Erith Rands, UK | McGoran et al., 2020 [106] |
Chiromantes dehaani | 1–20 μm | White | Transparent | Filament | NA | 0.39 ± 2.83 | The Beibu Gulf of the South China Sea | S. Zhang et al., 2021 [124] |
Blue Swimming Crab, Portunus pe- lagicus | 0.09 µm up to 38.6 mm | Red | NA | Filament | 216 | 0.73 ± 1.4 | Wonnapha Coastal Wetland, Thailand | Kleawkla, 2019 [125] |
Wild Crabs, P. trituberculatus, C. japonica, D. japonica, M. planes | <1000 µm | Black–Grey | Black–Grey | Filament | 631 | 5.17 ± 4.43 | Yellow Sea and East China Sea, China | T. Zhang et al., 2021 [126] |
Intertidal Crab, Chi- romantes dehaani | <1000 μm | Dark Colours | Dark Colours | Filament | 592 | 1.48 ± 0.45 | Intertidal zone in Chongming Island, Yangtze Estuary | Wu et al., 2023 [127] |
Mud Crab, Scylla serrata | 0.0002–0.25 and 1–5 mm | Blue | Transparent | Filament | 1157 | 11.57 ± 6.29 | Negombo Lagoon in Sri Lanka | Present Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, B.C.G.; Amarathunga, A.A.D.; De Silva, D.S.M.; Bakir, A.; McGoran, A.R.; Athukorala, A.; Sivyer, D.B.; Reeve, C.; Maddumage, M.D.S.R. The Ecological Implication of Microplastic in Crabs from a Tropical Lagoon: Ingested Microplastic in Mud Crab Scylla serrata. Water 2024, 16, 3534. https://doi.org/10.3390/w16233534
Dias BCG, Amarathunga AAD, De Silva DSM, Bakir A, McGoran AR, Athukorala A, Sivyer DB, Reeve C, Maddumage MDSR. The Ecological Implication of Microplastic in Crabs from a Tropical Lagoon: Ingested Microplastic in Mud Crab Scylla serrata. Water. 2024; 16(23):3534. https://doi.org/10.3390/w16233534
Chicago/Turabian StyleDias, B. C. G., A. A. D. Amarathunga, D. S. M. De Silva, A. Bakir, A. R. McGoran, A. Athukorala, D. B. Sivyer, C. Reeve, and M. D. S. R. Maddumage. 2024. "The Ecological Implication of Microplastic in Crabs from a Tropical Lagoon: Ingested Microplastic in Mud Crab Scylla serrata" Water 16, no. 23: 3534. https://doi.org/10.3390/w16233534
APA StyleDias, B. C. G., Amarathunga, A. A. D., De Silva, D. S. M., Bakir, A., McGoran, A. R., Athukorala, A., Sivyer, D. B., Reeve, C., & Maddumage, M. D. S. R. (2024). The Ecological Implication of Microplastic in Crabs from a Tropical Lagoon: Ingested Microplastic in Mud Crab Scylla serrata. Water, 16(23), 3534. https://doi.org/10.3390/w16233534