Urban Single Precipitation Events: A Key for Characterizing Sources of Air Contaminants and the Dynamics of Atmospheric Chemistry Exchanges
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Air Contaminants in Wrocław Area
3.2. Meteorological Conditions in Wrocław Area
3.3. Precipitation Collection
3.4. Determination of Physicochemical Parameters in the Precipitation Samples
3.5. Statistical Analysis
4. Results and Discussion
4.1. Summer Rain Episode
4.2. Winter Rain Episode
4.3. Discussing Links Between Local Air Contamination and Rainwater Chemistry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvo, A.I.; Olmo, F.J.; Lyamani, H.; Alados-Arboledas, L.; Castro, A.; Fernández-Raga, M.; Fraile, R. Chemical composition of wet precipitation at the background EMEP station in Víznar (Granada, Spain) (2002–2006). Atmos. Res. 2010, 96, 408–420. [Google Scholar] [CrossRef]
- Ciężka, M.; Modelska, M.; Górka, M.; Trojanowska-Olichwer, A.; Widory, D. Chemical and isotopic interpretation of major ion compositions from precipitation: A one-year temporal monitoring study in Wrocław, SW Poland. J. Atmos. Chem. 2016, 73, 61–80. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z.; Liu, W.; Wu, Y.; Zhao, T.; Jiang, H.; Zhang, X.; Zhang, J.; Zhou, L.; Wang, Y. Chemical composition of precipitation in Shenzhen, a coastal mega-city in South China: Influence of urbanization and anthropogenic activities on acidity and ionic composition. Sci. Total Environ. 2019, 662, 218–226. [Google Scholar] [CrossRef]
- Migliavacca, D.; Teixeira, E.C.; Wiegand, F.; Machado, A.C.M.; Sanchez, J. Atmospheric precipitation and chemical composition of an urban site, Guaíba hydrographic basin, Brazil. Atmos. Environ. 2005, 39, 1829–1844. [Google Scholar] [CrossRef]
- Prathibha, P.; Kothai, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D. Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environ. Monit. Assess. 2010, 168, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Keresztesi, Á.; Birsan, M.V.; Nita, I.A.; Bodor, Z.; Szép, R. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environ. Sci. Eur. 2019, 31, 50. [Google Scholar] [CrossRef]
- Oduber, F.; Calvo, A.I.; Castro, A.; Blanco-Alegre, C.; Alves, C.; Barata, J.; Nunes, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; et al. Chemical composition of rainwater under two events of aerosol transport: A Saharan dust outbreak and wildfires. Sci. Total Environ. 2020, 734, 139202. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today. 1998, 51, 88–90. [Google Scholar] [CrossRef]
- Celle-Jeanton, H.; Travi, Y.; Loÿe-Pilot, M.D.; Huneau, F.; Bertrand, G. Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmos. Res. 2009, 91, 118–126. [Google Scholar] [CrossRef]
- Lee, B.K.; Lee, D.S.; Kim, M.G. Rapid time variations in chemical composition of precipitation in South Korea. Water Air Soil Pollut. 2001, 130, 427–432. [Google Scholar] [CrossRef]
- Cana-Cascallar LCOn the relationship between acid rain cloud type. J. Air Waste Manag. Assoc. 2002, 52, 334–338. [CrossRef] [PubMed]
- Zhang, N.; He, Y.; Cao, J.; Ho, K.; Shen, Z. Long-term trends in chemical composition of precipitation at Lijiang, southeast Tibetan Plateau, southwestern China. Atmos. Res. 2012, 106, 50–60. [Google Scholar] [CrossRef]
- Kotowski, T.; Motyka, J.; Knap, W.; Bielewski, J. 17-Year study on the chemical composition of rain, snow and sleet in very dusty air (Krakow, Poland). J. Hydrol. 2020, 582, 124543. [Google Scholar] [CrossRef]
- Małecki, J.J.; Matyjasik, M.; Krogulec, E.; Porowska, D. Long-term trends and factors influencing rainwater chemistry in the Tatra Mountains, Poland. Geol. Geophys. Environ. 2022, 48, 19–38. [Google Scholar] [CrossRef]
- Ames, D.L.; Roberts, L.E.; Webb, A.H. An automatic rain gauge for continuous, real time determination of rainwater chemistry. Atmos. Environ. 1987, 21, 1947–1955. [Google Scholar] [CrossRef]
- Chapman, E.G.; Luecken, D.J.; Dana, M.T.; Easter, R.C.; Hales, J.M.; Laulainen, N.S.; Thorp, J.M. Inter-storm comparisons from the OSCAR high density network experiment. Atmos. Environ. 1987, 21, 531–549. [Google Scholar] [CrossRef]
- Beverland, I.J.; Crowther, J.M. On the interpretation of event and sub-event rainfall chemistry. Environ. Pollut. 1992, 75, 163–174. [Google Scholar] [CrossRef]
- Beverland, I.J.; Crowther, J.M.; Srinivas, M.S.N. Acid deposition during two contrasting frontal rainfall events. Water Air Soil Pollut. 1997, 96, 93–106. [Google Scholar] [CrossRef]
- Beverland, I.J.; Crowther, J.M.; Srinivas, M.S.N. Episodic nature of wet deposition of acidic material at a site in south-east England. Water Air Soil Pollut. 1997, 96, 73–91. [Google Scholar] [CrossRef]
- Mullaugh, K.M.; Willey, J.D.; Kieber, R.J.; Mead, R.N.; Avery, G.B. Dynamics of the chemical composition of rainwater throughout Hurricane Irene. Atmos. Chem. Phys. 2013, 13, 2321–2330. [Google Scholar] [CrossRef]
- Rocha, F.R.; Fracassi da Silva, J.A.; Lago, C.L.; Fornaro, A.; Gutz, I.G.R. Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 1. Major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmos. Environ. 2003, 37, 105–115. [Google Scholar] [CrossRef]
- Zhao, Z.; Tian, L.; Fischer, E.; Li, Z.; Jiao, K. Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley, Eastern Tien Shan, China. Atmos. Environ. 2008, 42, 8934–8942. [Google Scholar] [CrossRef]
- Kassamba-Diaby, M.L.; Galy-Lacaux, C.; Yoboué, V.; Hickman, J.E.; Mouchel-Vallon, C.; Jaars, K.; Gnamien, S.; Konan, R.; Gardrat, E.; Silué, S. The Chemical Characteristics of Rainwater and Wet Atmospheric Deposition Fluxes at Two Urban Sites and One Rural Site in Côte d’Ivoire. Atmosphere 2023, 14, 809. [Google Scholar] [CrossRef]
- Moller, D.; Zierath, R. On the composition of precipitation water and its acidity. Tellus Ser. B. 1986, 38, 44–50. [Google Scholar] [CrossRef]
- Walna, B.; Kurzyca, I.; Siepak, J. Local effects of pollution on chemical composition of precipitation in areas differing in human impact. Pol. J. Environ. Stud. 2004, 13, 36–42. [Google Scholar]
- De Mello, W.Z. Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environ. Pollut. 2001, 114, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Gobre, T.; Salve, P.R.; Krupadam, R.J.; Bansiwal, A.; Shastry, S.; Wate, S.R. Chemical composition of precipitation in the coastal environment of india. Bull. Environ. Contam. Toxicol. 2010, 85, 48–53. [Google Scholar] [CrossRef]
- Cerón, R.M.; Cerón, J.G.; Cordova, A.V.; Zavala, J.; Muriel, M. Chemical composition of precipitation at coastal and marine sampling sites in Mexico. Glob. NEST J. 2005, 2, 212–221. [Google Scholar] [CrossRef]
- Yang, L.; Mukherjee, S.; Pandithurai, G.; Waghmare, V.; Safai, P.D. Influence of dust and sea-salt sandwich effect on precipitation chemistry over the Western Ghats during summer monsoon. Sci. Rep. 2019, 9, 19171. [Google Scholar] [CrossRef]
- Olson, R.K.; Reiners, W.A.; Lovett, G.M. Trajectory analysis of forest canopy effects on chemical flux in throughfall. Biogeochemistry 1985, 1, 361–373. [Google Scholar] [CrossRef]
- Hansen, K.; Draaijers, G.P.J.; Ivens, W.P.M.F.; Gundersen, P.; van Leeuwen, N.F.M. Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos. Environ. 1994, 28, 3195–3205. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Victor, T.; Begum, R. Impact of biomass burning on rainwater acidity and composition in Singapore. J. Geophys. Res. Atmos. 1999, 104, 26881–26890. [Google Scholar] [CrossRef]
- Payus, C.M.; Jikilim, C.; Sentian, J. Rainwater chemistry of acid precipitation occurrences due to long-range transboundary haze pollution and prolonged drought events during southwest monsoon season: Climate change driven. Heliyon 2020, 6, e04997. [Google Scholar] [CrossRef] [PubMed]
- Corral, A.F.; Dadashazar, H.; Stahl, C.; Edwards, E.-L.; Zuidema, P.; Sorooshian, A. Source apportionment of aerosol at a coastal site and relationships with precipitation chemistry: A case study over the southeast United States. Atmosphere 2020, 11, 1212. [Google Scholar] [CrossRef]
- Cuoco, E.; Tedesco, D.; Poreda, R.J.; Williams, J.C.; De Francesco, S.; Balagizi, C.; Darrah, T.H. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: Implications for essential potable water resources. J. Hazard. Mater 2013, 244–245, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, H.; Bi, X.; Lin, F.; Jiao, L.; Zhang, Y.; Feng, Y. The effect of atmospheric particulates on the rainwater chemistry in the Yangtze River Delta, China. J. Air Waste Manag. Assoc. 2019, 69, 1452–1466. [Google Scholar] [CrossRef]
- Liyandeniya, A.B.; Deeyamulla, M.P.; Priyantha, N. Source apportionment of rainwater chemical composition in wet precipitation at Kelaniya in Sri Lanka. Air Qual. Atmos. Health 2020, 13, 1497–1504. [Google Scholar] [CrossRef]
- Prakash, J.; Agrawal, S.B.; Agrawal, M. Global Trends of Acidity in Rainfall and Its Impact on Plants and Soil. J. Soil Sci. Plant Nutr. 2023, 23, 398–419. [Google Scholar] [CrossRef]
- Si, L.; Li, Z. Atmospheric precipitation chemistry and environmental significance in major anthropogenic regions globally. Sci. Total Environ. 2024, 926, 171830. [Google Scholar] [CrossRef] [PubMed]
- Walna, B. Human impact on atmospheric precipitation in a protected area in western poland. Results of long-term observations: Concentrations, deposition and trends. Atmos. Pollut. Res. 2015, 6, 778–787. [Google Scholar] [CrossRef]
- Walna, B.; Kurzyca, I.; Bednorz, E.; Kolendowicz, L. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland). Environ. Monit. Assess. 2013, 185, 5497–5514. [Google Scholar] [CrossRef] [PubMed]
- Czyżyk, F.; Rajmund, A. Quantities of certain elements carried into the soil with atmospheric precipitations in Wrocław region in the years 2002–2010. Inżynieria Ekolog. 2011, 27, 5–12, (In Polish with English Abstract). [Google Scholar]
- Górka, M.; Jȩdrysek, M.O.; Strąpoć, D. Isotopic composition of sulphates from meteoric precipitation as an indicator of pollutant origin in Wrocław (SW Poland). Isot. Environ. Health Stud. 2008, 44, 177–188. [Google Scholar] [CrossRef]
- Górka, M.; Sauer, P.E.; Lewicka-Szczebak, D.; Jȩdrysek, M.O. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2. Environ. Pollut. 2011, 159, 294–301. [Google Scholar] [CrossRef]
- Górka, M.; Skrzypek, G.; Hałas, S.; Jędrysek, M.O.; Strąpoć, D. Multi-seasonal pattern in 5-year record of stable H, O and S isotope compositions of precipitation (Wrocław, SW Poland). Atmos. Environ. 2017, 158, 197–210. [Google Scholar] [CrossRef]
- Pilarz, A. Analysis of Atmospheric Precipitation Chemistry Using Ion Chromatography. Master’s Thesis, University of Wrocław, Wrocław, Poland, 2019. (In Polish). [Google Scholar]
- Al-Khashman, O.A. Chemical characteristics of rainwater collected at a western site of Jordan. Atmos. Res. 2009, 91, 53–61. [Google Scholar] [CrossRef]
- Zhao, M.; Li, L.; Liu, Z.; Chen, B.; Huang, J.; Cai, J.; Deng, S. Chemical Composition and Sources of Rainwater Collected at a Semi-Rural Site in Ya’an, Southwestern China. Atmos. Clim. Sci. 2013, 3, 486–496. [Google Scholar] [CrossRef]
- Teixeira, E.C.; Migliavacca, D.; Filho, S.P.; Machado, A.C.M.; Dallarosa, J.B. Study of wet precipitation and its chemical composition in South of Brazil. An. Acad. Bras. Cienc. 2008, 80, 381–395. [Google Scholar] [CrossRef]
- Dubicki, A.; Dubicka, M.; Szymanowski, M. Wrocław Climate, Wrocław Environment—Informator 2002, Dolnośląska Fundacja Ekorozwoju; Smolnicki, K., Szykasiuk, M., Eds.; Wrocław, 2002; p. 223. Available online: http://www.eko.org.pl/wroclaw/pdf/klimat.pdf (accessed on 23 March 2023). (In Polish)
- Dubicka, M.; Szymanowski, M. Struktura miejskiej wyspy ciepła i jej zwiazek z warunkami pogodowymii urbanistycznymi Wrocławia. Acta Univ. Wratislav. 2000, 2269, 99–118. [Google Scholar]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Liana, E. Monitoring Chemizmu Opadów Atmosferycznych I Ocena Depozycji Zanieczyszczeń do Podłoza w Latach 2021–2022; Raport Roczny z Badań Monitoringowych w 2020 Roku; Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy: Warszawa, Poland, 2023. (In Polish) [Google Scholar]
- Żelaźniewicz, A.; Aleksandrowski, P. Regionalizacja tektoniczna Polski Polska południowo-zachodnia. Przegląd Geol. 2008, 56, 904–911. [Google Scholar]
- Derkowska, K.; Bartz, W.; Baron, J.; Lisowska, E. Morphology, function, petrography and provenance of ground stone tool assemblage from Niemczańska, Poland in the light of late Bronze Age lithic production in the Odra basin. Quat. Int. 2021, 586, 105–120. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Zhang, P.; Dudley, N.; Ure, A.M.; Littlejohn, D. Application of principal component analysis to the interpretation of rainwater compositional data. Anal. Chim. Acta. 1992, 258, 1–10. [Google Scholar] [CrossRef]
- Johnson, R.J. Multivariate Statistical Analysis in Geography; Longmans: London, UK, 1978. [Google Scholar]
- Manly, B.F.J. Multivariate Statistical Methods; Capman and Hall: New York, NY, USA, 1998. [Google Scholar]
- Jollife, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Drever, J.I. The Geochemistry of Natural Waters, Surface and Groundwater Environments; Prentice Hall: Kent, OH, USA, 1997. [Google Scholar]
- Beverland, I.J.; Crowther, J.M.; Srinivas, M.S.N.; Heal, M.R. The influence of meteorology and atmospheric transport patterns on the chemical composition of rainfall in south-east England. Atmos. Environ. 1998, 32, 1039–1048. [Google Scholar] [CrossRef]
- Guo, L.C.; Zhang, Y.; Lin, H.; Zeng, W.; Liu, T.; Xiao, J.; Rutherford, S.; You, J.; Ma, W. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 2016, 215, 195–202. [Google Scholar] [CrossRef]
- Tsai, Y.I.; Hsieh, L.Y.; Kuo, S.C.; Chen, C.L.; Wu, P.L. Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia. Atmos. Environ. 2011, 45, 3535–3547. [Google Scholar] [CrossRef]
- Izumi, I.; Nakamura, T.; Sack, R.L. Snow Engineering: Recent Advances; A.A. Balkema: Rotterdam, The Netherlands, 1997; pp. 171–173. [Google Scholar]
- Albertin, S.; Savarino, J.; Bekki, S.; Barbero, A.; Grilli, R.; Fournier, Q.; Ventrillard, I.; Caillon, N.; Law, K. Diurnal variations in oxygen and nitrogen isotopes of atmospheric nitrogen dioxide and nitrate: Implications for tracing NOx oxidation pathways and emission sources. Atmos. Chem. Phys. 2024, 24, 1361–1388. [Google Scholar] [CrossRef]
- Martins, E.H.; Nogarotto, D.C.; Mortatti, J.; Pozza, S.A. Chemical composition of rainwater in an urban area of the southeast of Brazil. Atmos. Pollut. Res. 2019, 10, 520–530. [Google Scholar] [CrossRef]
- Górka, M.; Rybicki, M.; Simoneit, B.R.T.; Marynowski, L. Determination of multiple organic matter sources in aerosol PM10 from Wrocław, Poland using molecular and stable carbon isotope compositions. Atmos. Environ. 2014, 89, 739–748. [Google Scholar] [CrossRef]
- Singh, G.K.; Choudhary, V.; Gupta, T.; Paul, D. Investigation of size distribution and mass characteristics of ambient aerosols and their combustion sources during post-monsoon in northern India. Atmos. Pollut. Res. 2020, 11, 170–178. [Google Scholar] [CrossRef]
P avg [hPa] | O3 avg [µg·m−3] | PM10 avg [µg·m−3] | PM2.5 avg [µg·m−3] | T2m avg [°C] | RH avg [%] | V avg [m·s−1] | RIMWM_sum [mm] | pH [−log [H+]] | EC [µS·cm−1] | HCO3− [mg·L−1] | F− [mg·L−1] | Cl− [mg·L−1] | NO2− [mg·L−1] | NO3− [mg·L−1] | PO43− [mg·L−1] | SO42− [mg·L−1] | Na+ [mg·L−1] | NH4+ [mg·L−1] | K+ [mg·L−1] | Mg2+ [mg·L−1] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O3 avg [µg·m−3] | 0.90 | ||||||||||||||||||||
PM10 avg [µg·m−3] | 0.79 | 0.81 | |||||||||||||||||||
PM2.5 avg [µg·m−3] | 0.17 | 0.16 | 0.39 | ||||||||||||||||||
T2m avg [°C] | 0.56 | 0.30 | 0.38 | 0.24 | |||||||||||||||||
RH avg [%] | −0.83 | −0.86 | −0.80 | −0.26 | −0.54 | ||||||||||||||||
V avg [m·s−1] | 0.81 | 0.65 | 0.59 | 0.25 | 0.56 | −0.65 | |||||||||||||||
RIMWM_sum [mm] | −0.06 | 0.16 | 0.25 | 0.19 | −0.28 | −0.06 | −0.06 | ||||||||||||||
pH [−log [H+]] | −0.29 | −0.26 | −0.43 | −0.34 | −0.02 | 0.29 | −0.42 | −0.37 | |||||||||||||
EC [µS·cm−1] | −0.07 | −0.05 | −0.11 | −0.16 | 0.18 | 0.11 | −0.11 | −0.40 | 0.82 | ||||||||||||
HCO3− [mg·L−1] | −0.31 | −0.50 | −0.23 | −0.38 | 0.03 | 0.36 | −0.34 | −0.48 | 0.50 | 0.44 | |||||||||||
F− [mg·L−1] | 0.36 | 0.40 | 0.27 | −0.09 | 0.12 | −0.14 | 0.41 | −0.11 | 0.21 | 0.62 | 0.02 | ||||||||||
Cl− [mg·L−1] | 0.13 | 0.22 | 0.11 | 0.28 | −0.07 | −0.17 | 0.11 | −0.24 | 0.03 | 0.10 | −0.10 | 0.33 | |||||||||
NO2− [mg·L−1] | 0.14 | 0.14 | 0.31 | 0.09 | 0.26 | 0.14 | 0.31 | −0.09 | 0.31 | 0.67 | 0.41 | 0.77 | 0.61 | ||||||||
NO3− [mg·L−1] | 0.83 | 0.78 | 0.68 | 0.09 | 0.56 | −0.65 | 0.70 | −0.17 | 0.08 | 0.44 | −0.15 | 0.70 | 0.14 | 0.66 | |||||||
PO43− [mg·L−1] | 0.01 | −0.07 | 0.10 | 0.32 | 0.28 | 0.07 | 0.25 | 0.41 | −0.55 | −0.35 | −0.51 | −0.06 | −0.27 | −0.10 | −0.01 | ||||||
SO42− [mg·L−1] | 0.29 | 0.21 | 0.17 | −0.01 | 0.25 | −0.03 | 0.54 | −0.10 | 0.11 | 0.51 | 0.11 | 0.89 | 0.23 | 0.83 | 0.56 | 0.11 | |||||
Na+ [mg·L−1] | 0.00 | 0.08 | −0.14 | −0.08 | −0.10 | 0.00 | 0.31 | −0.07 | 0.10 | 0.22 | −0.11 | 0.46 | 0.53 | 0.83 | 0.14 | −0.16 | 0.55 | ||||
NH4+ [mg·L−1] | 0.21 | 0.28 | 0.40 | 0.09 | 0.31 | −0.25 | 0.36 | 0.21 | 0.08 | 0.48 | −0.05 | 0.63 | 0.02 | 0.77 | 0.58 | 0.34 | 0.60 | 0.16 | |||
K+ [mg·L−1] | −0.08 | 0.05 | 0.00 | −0.21 | −0.50 | 0.23 | −0.28 | −0.03 | 0.38 | 0.48 | 0.25 | 0.57 | 0.40 | 0.70 | 0.18 | −0.44 | 0.27 | 0.06 | 0.30 | ||
Mg2+ [mg·L−1] | −0.46 | −0.46 | −0.46 | 0.46 | 0.39 | 0.56 | 0.05 | −0.29 | 0.10 | 0.53 | 0.05 | 0.36 | 0.67 | 0.32 | 0.10 | −0.20 | 0.67 | 0.82 | 0.41 | 0.21 | |
Ca2+ [mg·L−1] | −0.83 | −0.72 | −0.67 | 0.44 | 0.02 | 0.73 | −0.37 | −0.48 | 0.48 | 0.57 | 0.13 | 0.06 | 0.41 | 0.20 | −0.22 | −0.31 | 0.24 | 0.44 | −0.02 | 0.14 | 0.97 |
P avg [hPa] | O3 avg [µg·m−3] | PM10 avg [µg·m−3] | PM2.5 avg [µg·m−3] | T2m avg [°C] | RH avg [%] | V avg [m·s−1] | RIMWM_sum [mm] | pH [−log [H+]] | EC [µS·cm−1] | HCO3− [mg·L−1] | F− [mg·L−1] | Cl− [mg·L−1] | NO2− [mg·L−1] | NO3− [mg·L−1] | PO43− [mg·L−1] | SO42− [mg·L−1] | Na+ [mg·L−1] | NH4+ [mg·L−1] | K+ [mg·L−1] | Mg2+ [mg·L−1] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O3 avg [µg·m3] | −0.30 | ||||||||||||||||||||
PM10 avg [µg·m−3] | 0.79 | 0.00 | |||||||||||||||||||
PM2.5 avg [µg·m−3] | 0.64 | −0.55 | 0.70 | ||||||||||||||||||
T2m avg [°C] | 0.06 | 0.83 | 0.31 | −0.26 | |||||||||||||||||
RH avg [%] | −0.55 | −0.47 | −0.74 | −0.29 | −0.64 | ||||||||||||||||
V avg [m·s−1] | 0.21 | 0.49 | 0.36 | 0.13 | 0.41 | −0.53 | |||||||||||||||
RIMWM_sum [mm] | −0.46 | −0.49 | −0.56 | −0.18 | −0.49 | 0.87 | −0.63 | ||||||||||||||
pH [−log [H+]] | 0.51 | 0.16 | 0.72 | 0.50 | 0.25 | −0.69 | 0.21 | −0.49 | |||||||||||||
EC [µS·cm−1] | 0.50 | 0.37 | 0.48 | 0.17 | 0.32 | −0.77 | 0.54 | −0.90 | 0.63 | ||||||||||||
HCO3− [mg·L−1] | 0.55 | 0.42 | 0.74 | 0.31 | 0.51 | −0.98 | 0.45 | −0.86 | 0.89 | 0.90 | |||||||||||
F− [mg·L−1] | 0.55 | 0.36 | 0.56 | 0.14 | 0.44 | −0.88 | 0.38 | −0.79 | 0.59 | 0.80 | 0.90 | ||||||||||
Cl− [mg·L−1] | 0.49 | 0.46 | 0.56 | 0.19 | 0.44 | −0.88 | 0.55 | −0.89 | 0.74 | 0.93 | 0.96 | 0.87 | |||||||||
NO2− [mg·L−1] | 0.46 | 0.43 | 0.55 | 0.21 | 0.40 | −0.84 | 0.52 | −0.84 | 0.75 | 0.91 | 0.95 | 0.89 | 0.98 | ||||||||
NO3− [mg·L−1] | 0.29 | 0.30 | 0.22 | 0.13 | 0.27 | −0.63 | 0.58 | −0.85 | 0.24 | 0.82 | 0.60 | 0.64 | 0.71 | 0.69 | |||||||
PO43− [mg·L−1] | 0.41 | 0.57 | 0.61 | 0.14 | 0.60 | −0.88 | 0.71 | −0.90 | 0.53 | 0.81 | 0.87 | 0.77 | 0.84 | 0.79 | 0.72 | ||||||
SO42− [mg·L−1] | 0.53 | 0.43 | 0.55 | 0.18 | 0.47 | −0.90 | 0.57 | −0.94 | 0.61 | 0.95 | 0.93 | 0.89 | 0.95 | 0.92 | 0.83 | 0.87 | |||||
Na+ [mg·L−1] | 0.48 | 0.47 | 0.52 | 0.10 | 0.45 | −0.84 | 0.49 | −0.86 | 0.66 | 0.92 | 0.90 | 0.92 | 0.96 | 0.96 | 0.71 | 0.83 | 0.92 | ||||
NH4+ [mg·L−1] | 0.33 | 0.38 | 0.27 | 0.03 | 0.38 | −0.67 | 0.57 | −0.85 | 0.27 | 0.85 | 0.65 | 0.69 | 0.74 | 0.72 | 0.96 | 0.77 | 0.86 | 0.76 | |||
K+ [mg·L−1] | 0.88 | −0.59 | 0.90 | 0.80 | −0.07 | −0.80 | −0.02 | −0.74 | 0.78 | 0.88 | 0.90 | 0.81 | 0.83 | 0.87 | 0.63 | 0.58 | 0.83 | 0.88 | 0.63 | ||
Mg2+ [mg·L−1] | 0.80 | 0.42 | 0.82 | 0.49 | 0.19 | −0.77 | 0.27 | −0.84 | 0.92 | 0.92 | 0.92 | 0.84 | 0.97 | 0.94 | 0.61 | 0.79 | 0.89 | 0.94 | 0.64 | 0.81 | |
Ca2+ [mg·L−1] | 0.78 | 0.36 | 0.88 | 0.53 | 0.32 | −0.84 | 0.61 | −0.86 | 0.83 | 0.95 | 0.93 | 0.78 | 0.88 | 0.87 | 0.75 | 0.83 | 0.90 | 0.82 | 0.79 | 0.89 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górka, M.; Pilarz, A.; Modelska, M.; Drzeniecka-Osiadacz, A.; Potysz, A.; Widory, D. Urban Single Precipitation Events: A Key for Characterizing Sources of Air Contaminants and the Dynamics of Atmospheric Chemistry Exchanges. Water 2024, 16, 3701. https://doi.org/10.3390/w16243701
Górka M, Pilarz A, Modelska M, Drzeniecka-Osiadacz A, Potysz A, Widory D. Urban Single Precipitation Events: A Key for Characterizing Sources of Air Contaminants and the Dynamics of Atmospheric Chemistry Exchanges. Water. 2024; 16(24):3701. https://doi.org/10.3390/w16243701
Chicago/Turabian StyleGórka, Maciej, Aldona Pilarz, Magdalena Modelska, Anetta Drzeniecka-Osiadacz, Anna Potysz, and David Widory. 2024. "Urban Single Precipitation Events: A Key for Characterizing Sources of Air Contaminants and the Dynamics of Atmospheric Chemistry Exchanges" Water 16, no. 24: 3701. https://doi.org/10.3390/w16243701
APA StyleGórka, M., Pilarz, A., Modelska, M., Drzeniecka-Osiadacz, A., Potysz, A., & Widory, D. (2024). Urban Single Precipitation Events: A Key for Characterizing Sources of Air Contaminants and the Dynamics of Atmospheric Chemistry Exchanges. Water, 16(24), 3701. https://doi.org/10.3390/w16243701