Production and Characterization of Graphene Oxide for Adsorption Analysis of the Emerging Pollutant Butylparaben
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Graphene Oxide Production and Characterization
2.3. Adsorption
2.4. Evaluation of the Toxic of BP in Aqueous Media Before and After Adsorption
3. Results and Discussion
3.1. Graphene Oxide Production and Characterization
3.2. Adsorption
3.3. Evaluation of the Toxic of BP in Aqueous Media Before and After Adsorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, J.; Lv, B.R.; Shi, Y.J.; Chen, W.M.; Zhang, J.L. Environmental Pollution of Paraben Needs Attention: A Study of Methylparaben and Butylparaben Co-Exposure Trigger Neurobehavioral Toxicity in Zebrafish. Environ. Pollut. 2024, 356. [Google Scholar] [CrossRef] [PubMed]
- Vale, F.; Sousa, C.A.; Sousa, H.; Santos, L.; Simões, M. Impact of Parabens on Microalgae Bioremediation of Wastewaters: A Mechanistic Study. Chem. Eng. J. 2022, 442, 136374. [Google Scholar] [CrossRef]
- Correa-Navarro, Y.M.; Rivera-Giraldo, J.D.; Cardona-Castaño, J.A. Modified Cellulose for Adsorption of Methylparaben and Butylparaben from an Aqueous Solution. ACS Omega 2024, 9, 30224–30233. [Google Scholar] [CrossRef] [PubMed]
- Maske, P.; Dighe, V.; Mote, C.; Vanage, G. N-Butylparaben Exposure through Gestation and Lactation Impairs Spermatogenesis and Steroidogenesis Causing Reduced Fertility in the F1 Generation Male Rats. Environ. Pollut. 2020, 256, 112957. [Google Scholar] [CrossRef]
- Pereira, A.R.; Simões, M.; Gomes, I.B. Parabens as Environmental Contaminants of Aquatic Systems Affecting Water Quality and Microbial Dynamics. Sci. Total Environ. 2023, 905, 167332. [Google Scholar] [CrossRef]
- Medkova, D.; Hollerova, A.; Riesova, B.; Blahova, J.; Hodkovicova, N.; Marsalek, P.; Doubkova, V.; Weiserova, Z.; Mares, J.; Faldyna, M.; et al. Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians. Toxics 2023, 11, 333. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.C.d.S.; de Moraes, L.E.Z.; Santo, D.E.; Peron, A.P.; de Souza, D.C.; Bona, E.; Valarini, O. Removal of Bentazone Using Activated Carbon from Spent Coffee Grounds. J. Chem. Technol. Biotechnol. 2024, 99, 1342–1355. [Google Scholar] [CrossRef]
- do Nascimento, R.F.; de Lima, A.C.A.; Vidal, C.B.; Melo, D.d.Q.; Raulino, G.S.C. Adsorção: Aspectos Teóricos e Aplicações Ambientais; Imprensa Universitária: Fortaleza, Brazil, 2020; p. 308. [Google Scholar]
- Ribas, F.B.T.; da Silva, W.L. Biosorption: A Review of Promising Alternative Methods in Wastewater Treatment. Rev. Mater. 2022, 27, e13212. [Google Scholar] [CrossRef]
- da Rocha, S.A.F.; Rocha, B.C.d.S.; de Moraes, L.E.Z.; Villaça, J.M.P.; Scapin, D.; Santo, D.E.; Gonzalez, R.d.S.; Junior, O.V.; Peron, A.P. Evaluation and Simulation of the Adsorption Capacity of Octocrylene Sunscreen on Commercial Carbon and Biochar from Spent Coffee Beans. Processes 2024, 12, 1249. [Google Scholar] [CrossRef]
- Qu, H.J.; Huang, L.J.; Han, Z.Y.; Wang, Y.X.; Zhang, Z.J.; Wang, Y.; Chang, Q.R.; Wei, N.; Kipper, M.J.; Tang, J.G. A Review of Graphene-Oxide/Metal–Organic Framework Composites Materials: Characteristics, Preparation and Applications. J. Porous Mater. 2021, 28, 1837–1865. [Google Scholar] [CrossRef]
- De Araujo, C.M.B.; De Assis Filho, R.B.; Baptisttella, A.M.S.; Do Nascimento, G.F.O.; Da Costa, G.R.B.; Carvalho, M.N.; Ghislandi, M.G.; Sobrinho, M.A.D.M. Systematic Study of Graphene Oxide Production Using Factorial Design Techniques and Its Application to the Adsorptive Removal of Methylene Blue Dye in Aqueous Medium. Mater. Res. Express 2018, 5, 065042. [Google Scholar] [CrossRef]
- Bezerra de Araujo, C.M.; Wernke, G.; Ghislandi, M.G.; Diório, A.; Vieira, M.F.; Bergamasco, R.; Alves da Motta Sobrinho, M.; Rodrigues, A.E. Continuous Removal of Pharmaceutical Drug Chloroquine and Safranin-O Dye from Water Using Agar-Graphene Oxide Hydrogel: Selective Adsorption in Batch and Fixed-Bed Experiments. Environ. Res. 2023, 216, 114425. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, H.; Hu, Y.; Liu, Y.; Song, S. Does Silicate Mineral Impurities in Natural Graphite Affect the Characteristics of Synthesized Graphene? Mater. Res. Bull. 2016, 74, 333–339. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef] [PubMed]
- Andelkovic, I.B.; Kabiri, S.; Tavakkoli, E.; Kirby, J.K.; McLaughlin, M.J.; Losic, D. Graphene Oxide-Fe(III) Composite Containing Phosphate—A Novel Slow Release Fertilizer for Improved Agriculture Management. J. Clean. Prod. 2018, 185, 97–104. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, X.; Wang, Z.; Chi, Y.; Yue, T.; Dai, Y.; Zhao, J.; Xing, B. Adsorption and Catalytic Degradation of Preservative Parabens by Graphene-Family Nanomaterials. Sci. Total Environ. 2022, 806, 150520. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Marenco, A.R.; Giraldo, L.; Moreno-Piraján, J.C. Adsorption of N-Butylparaben from Aqueous Solution on Surface of Modified Granular Activated Carbons Prepared from African Palm Shell. Thermodynamic Study of Interactions. J. Environ. Chem. Eng. 2020, 8, 103969. [Google Scholar] [CrossRef]
- Atheba, P.; Allou, N.B.; Drogui, P.; Trokourey, A. Adsorption Kinetics and Thermodynamics Study of Butylparaben on Activated Carbon Coconut Based. J. Encapsulation Adsorpt. Sci. 2018, 8, 39–57. [Google Scholar] [CrossRef]
- Milonjić, S.K.; Kopečni, M.M.; Ilić, Z.E. The Point of Zero Charge and Adsorption Properties of Natural Magnetite. J. Radioanal. Chem. 1983, 78, 15–24. [Google Scholar] [CrossRef]
- Allwar, A. Characteristics of Pore Structures and Surface Chemistry of Activated Carbons by Physisorption, Ftir And Boehm Methods. IOSR J. Appl. Chem. 2012, 2, 9–15. [Google Scholar] [CrossRef]
- Galvan, D.; Bona, E. Aplicativo Gamma-Gui: Uma Interface Gráfica Amigável Para Planejamento De Experimentos No Matlab. Quim. Nova 2024, 47, e-20240005. [Google Scholar] [CrossRef]
- Valarini Junior, O.; Reitz Cardoso, F.A.; Machado Giufrida, W.; de Souza, M.F.; Cardozo-Filho, L. Production and Computational Fluid Dynamics-Based Modeling of PMMA Nanoparticles Impregnated with Ivermectin by a Supercritical Antisolvent Process. J. CO2 Util. 2020, 35, 47–58. [Google Scholar] [CrossRef]
- Lopes, G.d.S.; de Araujo, P.C.C.; da Silva, M.J.; Paim, L.L.; de Oliveira, K.R.; Valarini Junior, O.; Favareto, R.; Parizi, M.P.S.; Ferreira-Pinto, L. Kinetic Study of Peanut Seed Oil Extraction with Supercritical CO2. Res. Soc. Dev. 2022, 11, e15511427098. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; Wiley: Hoboken, NJ, USA, 2012; Volume 2, ISBN 9781118146927. [Google Scholar]
- Debien, I.C.N.; Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Pressurized Liquid Extraction as a Promising and Economically Feasible Technique for Obtaining Beta-Ecdysone-Rich Extracts from Brazilian Ginseng (Pfaffia Glomerata) Roots. Sep. Sci. Technol. 2015, 50, 1647–1657. [Google Scholar] [CrossRef]
- Dean, J.R. Pressurized Liquid Extraction. In Extraction Techniques for Environmental Analysis; Wiley: Hoboken, NJ, USA, 2022; pp. 171–204. [Google Scholar] [CrossRef]
- Derisso, C.R.; Pompei, C.M.E.; Spadoto, M.; da Silva Pinto, T.; Vieira, E.M. Occurrence of Parabens in Surface Water, Wastewater Treatment Plant in Southeast of Brazil and Assessment of Their Environmental Risk. Water Air Soil Pollut. 2020, 231, 468. [Google Scholar] [CrossRef]
- Rasyid, N.Q.; Muawanah, R. Konsentrasi Pengawet Paraben Pada Produk Perawatan Tubuh. In Seminar Nasional Hasil Penelitian & Pengabdian Kepada Masyarakat (SNP2M); Makassar, 2017; pp. 83–86. Available online: https://jurnal.poliupg.ac.id/index.php/snp2m/article/view/300 (accessed on 12 November 2024).
- Zbair, M.; El Hadrami, A.; Bellarbi, A.; Monkade, M.; Zradba, A.; Brahmi, R. Herbicide Diuron Removal from Aqueous Solution by Bottom Ash: Kinetics, Isotherm, and Thermodynamic Adsorption Studies. J. Environ. Chem. Eng. 2020, 8, 103667. [Google Scholar] [CrossRef]
- Musah, M.; Azeh, Y.; Mathew, J.; Umar, M.; Abdulhamid, Z.; Muhammad, A. Adsorption Kinetics and Isotherm Models: A Review. Caliphate J. Sci. Technol. 2022, 4, 20–26. [Google Scholar] [CrossRef]
- Sen Gupta, S.; Bhattacharyya, K.G. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A Review. Adv. Colloid Interface Sci. 2011, 162, 39–58. [Google Scholar] [CrossRef]
- Gonçalves Júnior, D.R.; de Araújo, P.C.C.; Simões, A.L.G.; Voll, F.A.P.; Parizi, M.P.S.; de Oliveira, L.H.; Ferreira-Pinto, L.; Cardozo-Filho, L.; de Jesus Santos, E. Assessment of the Adsorption Capacity of Phenol on Magnetic Activated Carbon. Asia-Pac. J. Chem. Eng. 2022, 17, e2725. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Jayakumar, N.S. Optimal Isotherm Parameters for Phenol Adsorption from Aqueous Solutions onto Coconut Shell Based Activated Carbon: Error Analysis of Linear and Non-Linear Methods. J. Taiwan Inst. Chem. Eng. 2017, 80, 472–487. [Google Scholar] [CrossRef]
- Spaltro, A.; Simonetti, S.; Torrellas, S.A.; Rodriguez, J.G.; Ruiz, D.; Juan, A.; Allegretti, P. Adsorption of Bentazon on CAT and CARBOPAL Activated Carbon: Experimental and Computational Study. Appl. Surf. Sci. 2018, 433, 487–501. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Brković, S.; Potkonjak, N.; Unterweger, C.; Bajuk-Bogdanović, D.; Pašti, I.; Lazarević-Pašti, T. Spent Coffee Grounds-Derived Carbon Material as an Effective Adsorbent for Removing Multiple Contaminants from Wastewater: A Comprehensive Kinetic, Isotherm, and Thermodynamic Study. J. Water Process Eng. 2024, 63, 105507. [Google Scholar] [CrossRef]
- Fiskesjö, G. The Allium Test as a Standard in Environmental Monitoring. Hereditas 1985, 102, 99–112. [Google Scholar] [CrossRef]
- de Assis, L.K.; Damasceno, B.S.; Carvalho, M.N.; Oliveira, E.H.C.; Ghislandi, M.G. Adsorption Capacity Comparison between Graphene Oxide and Graphene Nanoplatelets for the Removal of Coloured Textile Dyes from Wastewater. Environ. Technol. 2020, 41, 2360–2371. [Google Scholar] [CrossRef] [PubMed]
- PubChem NIH National Library of Medicine NCBI. Butylparaben. 2023.
- Zbair, M.; Ainassaari, K.; Drif, A.; Ojala, S.; Bottlinger, M.; Pirilä, M.; Keiski, R.L.; Bensitel, M.; Brahmi, R. Toward New Benchmark Adsorbents: Preparation and Characterization of Activated Carbon from Argan Nut Shell for Bisphenol A Removal. Environ. Sci. Pollut. Res. 2018, 25, 1869–1882. [Google Scholar] [CrossRef]
- Ersan, G.; Apul, O.G.; Perreault, F.; Karanfil, T. Adsorption of Organic Contaminants by Graphene Nanosheets: A Review. Water Res. 2017, 126, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Muñoz, E.M.; García-Mateos, F.J.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Biomass Waste Carbon Materials as Adsorbents for CO2 Capture under Post-Combustion Conditions. Front. Mater. 2016, 3, 23. [Google Scholar] [CrossRef]
- Sarker, A.I.; Aroonwilas, A.; Veawab, A. Equilibrium and Kinetic Behaviour of CO2 Adsorption onto Zeolites, Carbon Molecular Sieve and Activated Carbons. Energy Procedia 2017, 114, 2450–2459. [Google Scholar] [CrossRef]
- Vu, T.T.; La, T.V.; Pham, V.T.; Vu, M.K.; Huynh, D.C.; Tran, N.K. Highly Efficient Adsorbent for the Transformer Oil Purification by ZnO/Graphene Composite. Arab. J. Chem. 2020, 13, 7798–7808. [Google Scholar] [CrossRef]
- Arabpour, A.; Dan, S.; Hashemipour, H. Preparation and Optimization of Novel Graphene Oxide and Adsorption Isotherm Study of Methylene Blue. Arab. J. Chem. 2021, 14, 103003. [Google Scholar] [CrossRef]
- Javier Sánchez, A. Characterization of Activated Carbon Produced from Coffee Residues by Chemical and Physical Activation; KTH, School of Chemical Science and Engineering: Stockholm, Sweden, 2011; p. 66. [Google Scholar]
- Lykoudi, A.; Frontistis, Z.; Vakros, J.; Manariotis, I.D.; Mantzavinos, D. Degradation of Sulfamethoxazole with Persulfate Using Spent Coffee Grounds Biochar as Activator. J. Environ. Manag. 2020, 271, 111022. [Google Scholar] [CrossRef] [PubMed]
- Ntzoufra, P.; Vakros, J.; Frontistis, Z.; Tsatsos, S.; Kyriakou, G.; Kennou, S.; Manariotis, I.D.; Mantzavinos, D. Effect of Sodium Persulfate Treatment on the Physicochemical Properties and Catalytic Activity of Biochar Prepared from Spent Malt Rootlets. J. Environ. Chem. Eng. 2021, 9, 105071. [Google Scholar] [CrossRef]
- Nithya Priya, V.; Rajkumar, M.; Mobika, J.; Linto Sibi, S.P. Alginate Coated Layered Double Hydroxide/Reduced Graphene Oxide Nanocomposites for Removal of Toxic As (V) from Wastewater. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 127, 114527. [Google Scholar] [CrossRef]
- Khan, A.; Kamal, T.; Saad, M.; Ameen, F.; Bhat, S.A.; Khan, M.A.; Rahman, F. Synthesis and Antibacterial Activity of Nanoenhanced Conjugate of Ag-Doped ZnO Nanorods with Graphene Oxide. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2023, 290, 122296. [Google Scholar] [CrossRef]
- Casallas Caicedo, F.M.; Vera López, E.; Agarwal, A.; Drozd, V.; Durygin, A.; Franco Hernandez, A.; Wang, C. Synthesis of Graphene Oxide from Graphite by Ball Milling. Diam. Relat. Mater. 2020, 109, 108064. [Google Scholar] [CrossRef]
- Sharma, S.; Kothiyal, N.C. Comparative Effects of Pristine and Ball-Milled Graphene Oxide on Physico-Chemical Characteristics of Cement Mortar Nanocomposites. Constr. Build. Mater. 2016, 115, 256–268. [Google Scholar] [CrossRef]
- Jose, P.P.A.; Kala, M.S.; Kalarikkal, N.; Thomas, S. Reduced Graphene Oxide Produced by Chemical and Hydrothermal Methods. Mater. Today Proc. 2018, 5, 16306–16312. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. J. Electron Spectros. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Farivar, F.; Yap, P.L.; Hassan, K.; Tung, T.T.; Tran, D.N.H.; Pollard, A.J.; Losic, D. Unlocking Thermogravimetric Analysis (TGA) in the Fight against “Fake Graphene” Materials. Carbon 2021, 179, 505–513. [Google Scholar] [CrossRef]
- Tohamy, H.A.S.; El-Sakhawy, M.; Kamel, S. Carboxymethyl Cellulose-Grafted Graphene Oxide/Polyethylene Glycol for Efficient Ni(II) Adsorption. J. Polym. Environ. 2021, 29, 859–870. [Google Scholar] [CrossRef]
- Yang, J.; Shojaei, S.; Shojaei, S. Removal of Drug and Dye from Aqueous Solutions by Graphene Oxide: Adsorption Studies and Chemometrics Methods. npj Clean Water 2022, 5, 5. [Google Scholar] [CrossRef]
- Kumar, N.; Srivastava, V.C. Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega 2018, 3, 10233–10242. [Google Scholar] [CrossRef]
- de la Peña-Benítez, P.R.; García-Santos, A.; Santonja, R.; Sapiña, M.; Jiménez-Relinque, E.; Castellote, M.; Sánchez-Cifuentes, M.; de la Peña-Benítez, P.R.; García-Santos, A.; Santonja, R.; et al. Evaluación Ambiental de Pinturas Al Agua Para Exteriores de Los Edificios Modificadas Con Óxido de Grafeno. Superf. y Vacío 2016, 29, 105–111. [Google Scholar]
- Liu, Y.; Shen, L. From Langmuir Kinetics to First- and Second-Order Rate Equations for Adsorption. Langmuir 2008, 24, 11625–11630. [Google Scholar] [CrossRef]
- Liu, F.F.; Zhao, J.; Wang, S.; Du, P.; Xing, B. Effects of Solution Chemistry on Adsorption of Selected Pharmaceuticals and Personal Care Products (PPCPs) by Graphenes and Carbon Nanotubes. Environ. Sci. Technol. 2014, 48, 13197–13206. [Google Scholar] [CrossRef] [PubMed]
- Grilla, E.; Vakros, J.; Konstantinou, I.; Manariotis, I.D.; Mantzavinos, D. Activation of Persulfate by Biochar from Spent Malt Rootlets for the Degradation of Trimethoprim in the Presence of Inorganic Ions. J. Chem. Technol. Biotechnol. 2020, 95, 2348–2358. [Google Scholar] [CrossRef]
- Giannakopoulos, S.; Frontistis, Z.; Vakros, J.; Poulopoulos, S.G.; Manariotis, I.D.; Mantzavinos, D. Combined Activation of Persulfate by Biochars and Artificial Light for the Degradation of Sulfamethoxazole in Aqueous Matrices. J. Taiwan Inst. Chem. Eng. 2022, 136, 104440. [Google Scholar] [CrossRef]
- Mrozik, W.; Minofar, B.; Thongsamer, T.; Wiriyaphong, N.; Khawkomol, S.; Plaimart, J.; Vakros, J.; Karapanagioti, H.; Vinitnantharat, S.; Werner, D. Valorisation of Agricultural Waste Derived Biochars in Aquaculture to Remove Organic Micropollutants from Water—Experimental Study and Molecular Dynamics Simulations. J. Environ. Manag. 2021, 300, 113717. [Google Scholar] [CrossRef]
- Rissouli, L.; Benicha, M.; Chabbi, M. Contribution to the Elimination of Linuron by the Adsorption Process Using Chitin and Chitosan Biopolymers. J. Mater. Environ. Sci. 2016, 7, 531–540. [Google Scholar]
- Benaouda, B.; Iman, G.; Michalkiewicz, B. Study on Anionic Dye Toxicity Reduction from Simulated Media by MnO2/Agro-Biomass Based-AC Composite Adsorbent. Ind. Crops Prod. 2024, 208, 117789. [Google Scholar] [CrossRef]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
- McCabe, W.C.; Smith, J.C.; Harriot, P. Unit Operations of Chemical Engineering. Choice Rev. Online 1993, 30, 30–6200. [Google Scholar] [CrossRef]
- Mozaffari Majd, M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010−2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef] [PubMed]
- Sadasivam, S.; Krishna, S.K.; Ponnusamy, K.; Nagarajan, G.S.; Kang, T.W.; Venkatesalu, S.C. Equilibrium and Thermodynamic Studies on the Adsorption of an Organophosphorous Pesticide onto “Waste” Jute Fiber Carbon. J. Chem. Eng. Data 2010, 55, 5658–5662. [Google Scholar] [CrossRef]
- Senthilkumaar, S.; Krishna, S.K.; Kalaamani, P.; Subburamaan, C.V.; Subramaniam, N.G. Adsorption of Organophosphorous Pesticide from Aqueous Solution Using “Waste” Jute Fiber Carbon. Mod. Appl. Sci. 2010, 4, 67. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Moghaddam, M.R.A.; Kowsari, E. Efficient Regeneration/Reuse of Graphene Oxide as a Nanoadsorbent for Removing Basic Red 46 from Aqueous Solutions. J. Mol. Liq. 2020, 312, 113386. [Google Scholar] [CrossRef]
- Santo, D.E.; Dusman, E.; da Silva Gonzalez, R.; Romero, A.L.; dos Santos Gonçalves do Nascimento, G.C.; de Souza Moura, M.A.; Bressiani, P.A.; Filipi, Á.C.K.; Gomes, E.M.V.; Pokrywiecki, J.C.; et al. Prospecting Toxicity of Octocrylene in Allium cepa L. and Eisenia fetida Sav. Environ. Sci. Pollut. Res. 2023, 30, 8257–8268. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.A.S.; Nascimento, G.C.S.G.; Valarini, O.; Peron, A.P.; Souza, D.C. Application of Salvinia Biloba Raddi. in the Phytoextraction of the Emerging Pollutant Octocrylene in an Aquatic Environment. Processes 2024, 12, 1631. [Google Scholar] [CrossRef]
- Todorovac, E.; Durmisevic, I.; Cajo, S.; Haverić, A.; Mesic, A. Evaluation of DNA and Cellular Damage Caused by Methyl-, Ethyl- and Butylparaben in Vitro. Toxicol. Environ. Chem. 2021, 103, 85–103. [Google Scholar] [CrossRef]
Run | Concentration of the Pollution (µg∙L−1) | Adsorbent Concentration (g∙L−1) | pH | ER% |
---|---|---|---|---|
R1 | 0 (−1) | 5 (−1) | 7 (0) | 0.0 |
R2 | 0 (−1) | 15 (1) | 7 (0) | 0.0 |
R3 | 600 (1) | 5 (−1) | 7 (0) | 84.9 |
R4 | 600 (1) | 15 (1) | 7 (0) | 55.9 |
R5 | 0 (−1) | 10 (0) | 2 (−1) | 0.0 |
R6 | 0 (−1) | 10 (0) | 12 (1) | 0.0 |
R7 | 600 (1) | 10 (0) | 2 (−1) | 56.4 |
R8 | 600 (1) | 10 (0) | 12 (1) | 22.3 |
R9 | 300 (0) | 5 (−1) | 2 (−1) | 35.5 |
R10 | 300 (0) | 5 (−1) | 12 (1) | 68.7 |
R11 | 300 (0) | 15 (1) | 2 (−1) | 12.1 |
R12 | 300 (0) | 15 (1) | 12 (1) | 10.0 |
R13 | 300 (0) | 10 (0) | 7 (0) | 17.0 |
R14 | 300 (0) | 10 (0) | 7 (0) | 16.7 |
R15 | 300 (0) | 10 (0) | 7 (0) | 17.2 |
Parameters Boehm GO | meq (mmol·g−1) |
---|---|
Carboxylic | 4.751 |
Lactonics | 2.231 |
Phenolics | 0.000 |
Basic | 0.000 |
Elemental analysis | GO % |
C | 50.29 |
O | 47.05 |
H | 2.42 |
C110H45O23 | 99.76 |
Other Components | 0.24 |
Parameters | Effects | Standard-Error | p-Value |
---|---|---|---|
A | 30.818 | 6.063 | 0.00382 |
x1 | 60.880 | 7.425 | 0.00936 |
−6.167 | 5.465 | 0.597 | |
−21.740 | 7.425 | 0.203 | |
−18.077 | 5.465 | 0.159 | |
−0.7402 | 0.074 | 0.962 | |
3.4724 | 5.465 | 0.763 | |
−2.4289 | 6.501 | 0.912 | |
−17.030 | 10.501 | 0.454 | |
−17.650 | 10.501 | 0.439 |
Model | Parameters Kinetic | |
---|---|---|
Parameter | Value | |
PFO | Qe (µg∙g−1) | 657.00 ± 8.99 |
k1 (min−1) | 0.003 ± 0.001 | |
Adj. R-Square | 0.995 | |
PSO | Qe (µg∙g−1) | 486.09 ± 20.10 |
k2 (µg∙g−1∙min−1) | 0.102 ± 0.08 | |
Adj. R-Square | 0.229 | |
ELC | α (µg∙g−1∙min−1) | 0.573 ± 0.065 |
β (µg∙g−1) | 1.742 ± 0.021 | |
Adj. R-Square | 0.658 | |
IPD | C (µg∙g−1) | −5.48 ± 0.065 |
kdi (min−0.5) | 19.33 ± 1.43 | |
Adj. R-Square | 0.942 | |
Isotherms | Parameters Isotherms of the equilibrium | |
Qmax (µg∙g−1) | 2432 ± 15.07 | |
Langmuir | K (L∙g−1) | 0.008 ± 0.001 |
Adj. R-Square | 0.999 | |
Kf (µg∙g−1∙L−1/n) | 50.54 ± 1.58 | |
Freundlich | n | 1.52 ± 0.15 |
Adj. R-Square | 0.982 |
Parameters Thermodynamic | |||
---|---|---|---|
T (K) | ΔH (kJ∙mol−1) | ΔS (kJ∙K−1∙mol−1) | ΔG (kJ∙mol−1) |
293 | 2.436 | 3.24·10−2 | −7.064 |
325 | - | - | −8.101 |
341 | - | - | −8.621 |
Mitotic indices and cellular alteration indices of root meristems of Allium cepa L. | |||
Treatment | Concentration of the BP | MI/SD (%) | ICC/SD (%) |
CO | 100.00 ± 0.8 | 0.1 ± 0.9 | |
Before adsorption | 30 µg∙L−1 | 59.1 ± 0.5 * | 17.4 ± 0.6 * |
600 µg∙L−1 | 59.0 ± 0.8 * | 38.9 ± 0.9 * | |
After adsorption with graphene | 600 µg∙L−1 | 89.5 ± 1.0 | 0.1 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsubouchi, L.M.S.; de Almeida, E.A.; Santo, D.E.; Bona, E.; Pereira, G.L.D.; Jegatheesan, V.; Cardozo-Filho, L.; Peron, A.P.; Junior, O.V. Production and Characterization of Graphene Oxide for Adsorption Analysis of the Emerging Pollutant Butylparaben. Water 2024, 16, 3703. https://doi.org/10.3390/w16243703
Tsubouchi LMS, de Almeida EA, Santo DE, Bona E, Pereira GLD, Jegatheesan V, Cardozo-Filho L, Peron AP, Junior OV. Production and Characterization of Graphene Oxide for Adsorption Analysis of the Emerging Pollutant Butylparaben. Water. 2024; 16(24):3703. https://doi.org/10.3390/w16243703
Chicago/Turabian StyleTsubouchi, Lorena Maihury Santos, Edson Araujo de Almeida, Diego Espirito Santo, Evandro Bona, Gustavo Leite Dias Pereira, Veeriah Jegatheesan, Lucio Cardozo-Filho, Ana Paula Peron, and Osvaldo Valarini Junior. 2024. "Production and Characterization of Graphene Oxide for Adsorption Analysis of the Emerging Pollutant Butylparaben" Water 16, no. 24: 3703. https://doi.org/10.3390/w16243703
APA StyleTsubouchi, L. M. S., de Almeida, E. A., Santo, D. E., Bona, E., Pereira, G. L. D., Jegatheesan, V., Cardozo-Filho, L., Peron, A. P., & Junior, O. V. (2024). Production and Characterization of Graphene Oxide for Adsorption Analysis of the Emerging Pollutant Butylparaben. Water, 16(24), 3703. https://doi.org/10.3390/w16243703