County-Level Flash Flood Warning Framework Coupled with Disaster-Causing Mechanism
Abstract
:1. Introduction
2. Study Area and Data
2.1. Research Area
2.2. Data
3. The County-Level Flash Flood Warning Framework Coupled with the Disaster-Causing Mechanism
3.1. The Framework for the County-Level Critical Rainfall Threshold
3.2. RTI Model and Parameter Calibration Method
- I: rainfall intensity in mm/h.
- Rt: the accumulated rainfall before the occurrence of a flash flood in mm.
- R0: the accumulated rainfall from the start of rainfall to the occurrence of the flash flood in mm.
- Pa: the accumulated rainfall in the n days before the start of the flash flood in mm.
- i: the number of days used to calculate the pre-event rainfall.
- α: the intraday rainfall weighting coefficient.
- fi: the average value of the i-th disaster-causing factor;
- wi: the weight of the i-th disaster-causing factor.
- RTIP: the RTI value when the probability of a flash flood occurrence is P%.
- R: the effective accumulated rainfall;
- R0: the intraday rainfall.
4. Results and Analysis
4.1. Analysis of Disaster Causal Factors
4.1.1. Topography and Landforms
4.1.2. Soil and Land Use
4.1.3. Meteorology and Hydrology
4.1.4. Population and Economy
4.2. Critical Warning Indicators for Flash Flood Disasters
4.2.1. Rainfall Triggering Index (RTI)
4.2.2. Calculation of Warning Indicators
4.3. Determination of County-Level Flash Flood Warning Indicators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gourley, J.J.; Flamig, Z.L.; Vergara, H.; Kirstetter, P.E.; Clark, R.A.; Argyle, E.; Arthur, A.; Martinaitis, S.; Terti, G.; Erlingis, J.M.; et al. The Flooded Locations and Simulated Hydrographs (FLASH) Project: Improving the Tools for Flash Flood Monitoring and Prediction Across the United States. Bull. Am. Meteorol. Soc. 2016, 98, 361–372. [Google Scholar] [CrossRef]
- Yang, W.; Xu, K.; Lian, J.; Bin, L.; Ma, C. Multiple Flood Vulnerability Assessment Approach Based on Fuzzy Comprehensive Evaluation Method and Coordinated Development Degree Model. J. Environ. Manag. 2018, 213, 440–450. [Google Scholar] [CrossRef]
- Mogil, H.M.; Monro, J.C.; Groper, H.S. NWS’s Flash Flood Warning and Disaster Preparedness Program. Bull. Am. Meteorol. Soc. 1978, 59, 690–699. [Google Scholar] [CrossRef]
- Zhai, G.; Fukuzono, T.; Ikeda, S. An Empirical Model of Fatalities and Injuries Due to Floods in Japan. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 863–875. [Google Scholar] [CrossRef]
- Lee, M.-H. Overview of Debris-Flow Monitoring and Warning Systemin Taiwan. Res. Soil Water Conserv. 2009, 16, 239–242. [Google Scholar]
- Liu, C.; Guo, L.; Ye, L.; Zhang, S.; Zhao, Y.; Song, T. A Review of Advances in China’s Flash Flood Early-Warning System. Nat. Hazards 2018, 92, 619–634. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Degli Esposti, S.; Gaume, E.; Anquetin, S. Flash Flood Warning Based on Rainfall Thresholds and Soil Moisture Conditions: An Assessment for Gauged and Ungauged Basins. J. Hydrol. 2008, 362, 274–290. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, X.; Jiao, J.; Diao, M.; Li, W. Early Warning Index of Flash Flood Disaster: A Case Study of Shuyuan Watershed in Qufu City. Water Sci. Technol. 2023, 87, 892–909. [Google Scholar] [CrossRef]
- Miao, Q.; Yang, D.; Yang, H.; Li, Z. Establishing A Rainfall Threshold for Flash Flood Warnings in China’s Mountainous Areas Based on A Distributed Hydrological Model. J. Hydrol. 2016, 541, 371–386. [Google Scholar] [CrossRef]
- Reed, S.; Schaake, J.; Zhang, Z. A Distributed Hydrologic Model and Threshold Frequency-Based Method for Flash Flood Forecasting at Ungauged Locations. J. Hydrol. 2007, 337, 402–420. [Google Scholar] [CrossRef]
- Martina, L.V.; Todini, E.; Libralon, A. A Bayesian Decision Approach to Rainfall Thresholds Based Flood Warning. Hydrol. Earth Syst. Sci. 2006, 10, 413–426. [Google Scholar] [CrossRef]
- Bournas, A.; Baltas, E. Investigation of The Gridded Flash Flood Guidance in A Peri-Urban Basin in Greater Athens Area, Greece. J. Hydrol. 2022, 610, 127820. [Google Scholar] [CrossRef]
- Ye, J.Y.; Li, Z.J.; Chang, L. Research and Application of Flash Flood Early Warning Method Based on Dynamic Critical Precipitation. Meteorol. Mon. 2014, 40, 101–107. [Google Scholar]
- Liu, Z.Y.; Yang, D.W.; Hu, J.W. Dynamic Critical Rainfall-Based Torrential Flood Early Warning for Medium-Small Rivers. J. Beijing Norm. Univ. Nat. Sci. 2010, 46, 317–321. [Google Scholar]
- Tufano, R.; Guerriero, L.; Corona, M.A.; Cianflone, G.; Di Martire, D.; Ietto, F.; Novellino, A.; Rispoli, C.; Zito, C.; Calcaterra, D. Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling. Nat. Hazards 2023, 116, 1029–1051. [Google Scholar] [CrossRef]
- Janizadeh, S.; Avand, M.; Jaafari, A.; Van Phong, T.; Bayat, M.; Ahmadisharaf, E.; Prakash, I.; Pham, B.T.; Lee, S. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustainability 2019, 11, 5426. [Google Scholar] [CrossRef]
- Zhang, S.S.; Wang, J.T.; Xu, Z.H. Mountain Flood Rainfall Early Warning Based on HEC–HMS Model in Small Watershed. China Rural Water Hydropower 2019, 7, 40–44+52. [Google Scholar]
- Yuan, W.; Tu, X.; Su, C.; Liu, M.; Yan, D.; Wu, Z. Research on the Critical Rainfall of Flash Floods in Small Watersheds Based on the Design of Characteristic Rainfall Patterns. Water Resour. Manag. 2021, 35, 3297–3319. [Google Scholar] [CrossRef]
- Berti, M.; Bernard, M.; Gregoretti, C.; Alessandro, S. Physical Interpretation of Rainfall Threshold for Debris Flows Triggered by Surface Erosion. In Geophysical Research Abstracts; EBSCO Information Services: Ipswich, MA, USA, 2019; Volume 21. [Google Scholar]
- Alfieri, L.; Thielen, J. A European Precipitation Index for Extreme Rain-Storm and Flash Flood Early Warning. Meteorol. Appl. 2015, 22, 3–13. [Google Scholar] [CrossRef]
- Jan, C.D.; Lee, M.H. Debris flow rainfall warning model. J. Chin. Soil Water Conserv. 2004, 35, 275–285. [Google Scholar]
- Nam, D.H.; Lee, S.H.; Kim, B.S. Development of Nomogram for Debris Flow Forecasting Based on Critical Accumulated Rainfall in South Korea. Water 2019, 11, 2181. [Google Scholar] [CrossRef]
- Guo, L.; Li, Y.L.; Li, Q.; Zhai, X.Y.; Zhang, X.L.; Liu, Y.H. Application Composition Warning Index in Flash Flood Early Warning. Yellow River 2018, 40, 38–41. [Google Scholar]
- Peng, W.B.; Zhao, D.; Huang, E.; Wang, X.K. Early Warning Model of Flash Flood Disasters Based on Rainfall-Driving Index in Small Watersheds of Fuxing River, Chongqing City. China Flood Drought Manag. 2019, 29, 1–4. (In Chinese) [Google Scholar]
- Ma, M.; Wang, H.; Yang, Y.; Zhao, G.; Tang, G.; Hong, Z.; Clark, R.A., III; Chen, Y.; Xu, H.; Hong, Y. Development of A New Rainfall-Triggering Index of Flash Flood Warning-Case Study in Yunnan Province, China. Flood Risk Manag. 2020, 14, el2679. [Google Scholar] [CrossRef]
- Subraelu, P.; Ahmed, A.; Ebraheem, A.A.; Sherif, M.; Mirza, S.B.; Ridouane, F.L.; Sefelnasr, A. Risk Assessment and Mapping of Flash Flood Vulnerable Zones in Arid Region, Fujairah City, UAE-Using Remote Sensing and GIS-Based Analysis. Water 2023, 15, 2802. [Google Scholar] [CrossRef]
- Arnous, M.O.; El-Rayes, A.E.; El-Nady, H.; Helmy, A.M. Flash flooding hazard assessment, modeling, and management in the coastal zone of Ras Ghareb City, Gulf of Suez, Egypt. J. Coast. Conserv. 2022, 26, 77. [Google Scholar] [CrossRef]
- Hamid, H.E.; Wenlong, W.; Li, Q. Environmental sensitivity of flash flood hazard using geospatial techniques. Glob. J. Environ. Sci. Manag. 2020, 6, 31–46. [Google Scholar]
- Ding, L.; Ma, L.; Li, L.; Liu, C.; Li, N.; Yang, Z.; Yao, Y.; Lu, H. A Survey of Remote Sensing and Geographic Information System Applications for Flash Floods. Remote Sens. 2021, 13, 1818. [Google Scholar] [CrossRef]
- Chancay, J.E.; Espitia-Sarmiento, E.F. Improving Hourly Precipitation Estimates for Flash Flood Modeling in Data-Scarce Andean-Amazon Basins: An Integrative Framework Based on Machine Learning and Multiple Remotely Sensed Data. Remote Sens. 2021, 13, 4446. [Google Scholar] [CrossRef]
- Ruzza, G.; Guerriero, L.; Grelle, G.; Guadagno, F.M.; Revellino, P. Multi-Method Tracking of Monsoon Floods Using Sentinel-1 Imagery. Water 2019, 11, 2289. [Google Scholar] [CrossRef]
- El-Magd, S.A.A. Flash flood hazard mapping using GIS and bivariate statistical method at Wadi Bada’a, Gulf of Suez, Egypt. J. Geosci. Environ. Prot. 2019, 7, 372–385. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.D.; Pham, T.D.; Ngo, P.T.T.; Hoa, P.V.; Minh, N.Q.; Tran, X.T.; Samui, P. A new intelligence approach based on GIS-based Multivariate Adaptive Regression Splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. J. Hydrol. 2019, 575, 314–326. [Google Scholar]
- Sapan, E.G.A.; Santosa, B.H.; Ridwansyah, I.; Fakhrudin, M.; Pravitasari, A.E.; Novianti, R.; Wardhani, F.A.; Abdiyani, S.; Adhyani, N.L.; Setiawan, A.M. Understanding Flash Floods in Hilly Tropical Watersheds: A Trigger Factor Analysis. IOP Conf. Ser. Earth Environ. Sci. 2023, 1266, 012046. [Google Scholar] [CrossRef]
- Cui, F.; Yang, K.; Chen, J. Relationship Between Occurrence of Debris Flow and Antecedent Precipitation: Taking the Jiangjia Gully as An Example. China Flood Drought Manag. 2003, 1, 11–15. [Google Scholar]
Characteristics | Name | Source |
---|---|---|
Topographic | Digital Elevation Model (DEM) | Shuttle Rador Topography Mision (SRTM) |
Slope | ||
Geomorphic type | Chinese Academy of Sciences Resource and Environmental Science Data Center | |
Land | Soil type | |
Soil Texture | ||
Land use status | ||
Meteorological | Maximum 3 h rainfall | Chinese Meteorological Dataset |
Maximum 24 h rainfall | ||
Hydrological | Distribution of water systems | Chinese Vector Format Datasets |
Socio-economic | Population | Chinese Academy of Sciences Resource and Environmental Science Data Center |
Gross Domestic Product (GDP) |
Pa1 | Pa2 | Pa3 | Pa5 | Pa6 | Pa7 | Pa9 | Pa10 | Pa12 | Pa13 | |
---|---|---|---|---|---|---|---|---|---|---|
Linear functions | 0.4192 | 0.7746 | 0.7684 | 0.7819 | 0.7801 | 0.7961 | 0.8004 | 0.8020 | 0.8001 | 0.8017 |
Exponential functions | \ | \ | 0.4959 | 0.6164 | 0.6034 | 0.6162 | 0.6530 | 0.6540 | 0.6538 | 0.6494 |
Logarithmic functions | 0.2275 | 0.3779 | 0.3870 | 0.3960 | 0.4026 | 0.4209 | 0.4112 | 0.4099 | 0.4098 | 0.4082 |
Power functions | \ | \ | 0.3551 | 0.4441 | 0.4292 | 0.4505 | 0.4690 | 0.4662 | 0.4626 | 0.4578 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Zhang, N.; Geng, J.; Qiao, M.; Ren, H.; Li, Q. County-Level Flash Flood Warning Framework Coupled with Disaster-Causing Mechanism. Water 2024, 16, 376. https://doi.org/10.3390/w16030376
Ma M, Zhang N, Geng J, Qiao M, Ren H, Li Q. County-Level Flash Flood Warning Framework Coupled with Disaster-Causing Mechanism. Water. 2024; 16(3):376. https://doi.org/10.3390/w16030376
Chicago/Turabian StyleMa, Meihong, Nan Zhang, Jiufei Geng, Manrong Qiao, Hongyu Ren, and Qing Li. 2024. "County-Level Flash Flood Warning Framework Coupled with Disaster-Causing Mechanism" Water 16, no. 3: 376. https://doi.org/10.3390/w16030376
APA StyleMa, M., Zhang, N., Geng, J., Qiao, M., Ren, H., & Li, Q. (2024). County-Level Flash Flood Warning Framework Coupled with Disaster-Causing Mechanism. Water, 16(3), 376. https://doi.org/10.3390/w16030376