Evaluating the Ecological Impact of Wastewater Discharges on Microbial and Contaminant Dynamics in Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction
2.3. Bioinformatics Processing of Metagenomic Sequences
3. Result and Discussion
3.1. Overall Microbial Community Structure
3.2. Alpha Diversity Analysis
3.3. Taxonomic Analysis at the Phylum and Genus Levels
3.4. Kyoto Encylopedia of Genes and Genomes (KEGG) Metabolic Analysis
3.5. Potential Biological Pollution
3.6. Water Eutrophication River
3.6.1. Nitrogen-Content Variations and Their Effects on Microorganisms
3.6.2. Phosphorus-Content Variations and Their Effects on Microorganisms
3.7. Resistance Gene Pollution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alharbi, O.A.; Jarvis, E.; Galani, A.; Thomaidis, N.S.; Nika, M.-C.; Chapman, D.V. Assessment of selected pharmaceuticals in Riyadh wastewater treatment plants, Saudi Arabia: Mass loadings, seasonal variations, removal efficiency and environmental risk. Sci. Total Environ. 2023, 882, 163284. [Google Scholar] [CrossRef]
- Hernandez-Chover, V.; Castellet-Viciano, L.; Fuentes, R.; Hernandez-Sancho, F. Circular economy and efficiency to ensure the sustainability in the wastewater treatment plants. J. Clean. Prod. 2023, 384, 135563. [Google Scholar] [CrossRef]
- Li, Y.; Han, Q.; Li, B. Engineering-scale application of sulfur-driven autotrophic denitrification wetland for advanced treatment of municipal tailwater. Bioresour. Technol. 2023, 379, 129035. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tao, T.; Li, X.-B.; Li, J.-H. A pilot-scale experimental research on biological phosphorus removal in a modified SBR treating urban wastewater. In Proceedings of the 2nd International Conference on Chemical Engineering and Advanced Materials (CEAM 2012), Guangzhou, China, 13–15 July 2012; pp. 2329–2332. [Google Scholar]
- Douxfils, J.; Mandiki, R.; Silvestre, F.; Bertrand, A.; Leroy, D.; Thome, J.-P.; Kestemont, P. Do sewage treatment plant discharges substantially impair fish reproduction in polluted rivers? Sci. Total Environ. 2011, 409, 4139. [Google Scholar] [CrossRef]
- Zhu, T.-T.; Su, Z.-X.; Lai, W.-X.; Zhang, Y.-B.; Liu, Y.-W. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Sci. Total Environ. 2021, 776, 145906. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Cai, P.; Gao, Q.; Zhong, H.; Sun, W.; Chen, Q. Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau. J. Hazard. Mater. 2022, 423, 127170. [Google Scholar] [CrossRef]
- Igere, B.E.; Okoh, A.I.; Nwodo, U.U. Wastewater treatment plants and release: The vase of Odin for emerging bacterial contaminants, resistance and determinant of environmental wellness. Emerg. Contam. 2020, 6, 212–224. [Google Scholar] [CrossRef]
- Wommack, K.E.; Ravel, J. Microbiome, demystifying the role of microbial communities in the biosphere. Microbiome 2013, 1, 1. [Google Scholar] [CrossRef]
- Shade, A. Diversity is the question, not the answer. ISME J. 2017, 11, 1–6. [Google Scholar] [CrossRef]
- Yang, H.; Xu, M.; Wang, L.; Wang, X.; Jeppesen, E.; Zhang, W. Metagenomic analysis to determine the characteristics of antibiotic resistance genes in typical antibiotic-contaminated sediments. J. Environ. Sci. 2023, 128, 12–25. [Google Scholar] [CrossRef]
- Li, M.; Zhao, S.; Zheng, N.; Wang, J. Advances in Microbial Macrogenomic Data Analysis Methods. J. Mirobiol. 2020, 40, 89–95. [Google Scholar]
- Chen, G.; Bai, R.; Zhang, Y.; Zhao, B.; Xiao, Y. Application of metagenomics to biological wastewater treatment. Sci. Total Environ. 2022, 807, 150737. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Chinese Research Academy of Environmental Sciences: Beijing, China, 2002.
- Zhu, H.; Li, B.; Ding, N.; Hua, Z.; Jiang, X. A Case Study on Microbial Diversity Impacts of a Wastewater Treatment Plant to the Receiving River. J. Geosci. Environ. Prot. 2021, 9, 206–220. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.-Q.; Yu, H.-B.; Song, H.-L.; Du, M.-X. Phosphorus Removal from Wastewater by Electrocoagulation with Magnetized Iron Particle Anode. Water Air Soil Pollut. 2020, 231, 502. [Google Scholar] [CrossRef]
- Wang, Q.L.C. Quantitative assessment study of water pollution composite index in Fuxin Xi River Basin. Heilongjiang Water Sci. Technol. 2021, 49, 17–19+47. [Google Scholar] [CrossRef]
- Chao, Y.; Ma, L.; Yang, Y.; Ju, F.; Zhang, X.-X.; Wu, W.-M.; Zhang, T. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment. Sci. Rep. 2013, 3, 3550. [Google Scholar] [CrossRef]
- Feng, M.; Lu, Y.; Yang, Y.; Zhang, M.; Xu, Y.-J.; Gao, H.-L.; Dong, L.; Xu, W.-P.; Yu, S.-H. Bioinspired greigite magnetic nanocrystals: Chemical synthesis and biomedicine applications. Sci. Rep. 2013, 3, 2994. [Google Scholar] [CrossRef]
- Bae, H.-K. A Comparative Analysis of Two Different Wastewater Treatment Processes in Actual Wastewater Treatment Plants. Quant. Bio-Sci. 2018, 37, 19–26. [Google Scholar] [CrossRef]
- Alkan, U.; Eleren, S.C.; Nalbur, B.E.; Odabas, E. Influence of the activated sludge system configuration on heavy metal toxicity reduction. World J. Microbiol. Biotechnol. 2008, 24, 1435–1443. [Google Scholar] [CrossRef]
- Ouyang, J.; Li, C.; Wei, L.; Wei, D.; Zhao, M.; Zhao, Z.; Zhang, J.; Chang, C.-C. Activated sludge and other aerobic suspended culture processes. Water Environ. Res. 2020, 92, 1717–1725. [Google Scholar] [CrossRef]
- Ya, X.; Jingcai, L.; Lu, D.; Yuqiang, L.; Weishi, L.; Changxing, N.; Qifei, H. Buffering distance between hazardous waste landfill and water supply wells in a shallow aquifer. J. Clean. Prod. 2019, 211, 1180–1189. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, T. Metagenomic and Metatranscriptomic Analysis of Microbial Community Structure and Gene Expression of Activated Sludge. PLoS ONE 2020, 15, e0243233. [Google Scholar] [CrossRef]
- Wang, F.; Sun, X.; Li, J.; Ai, S.; Ren, Q.; Nie, Z.; Bian, D. Analysis of microbial characteristics and population difference between different compartments of the mixed system at low temperature. Desalination Water Treat. 2021, 225, 53–62. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Z.; Fang, W.; Gao, G. Composition of bacterial communities in municipal wastewater treatment plant. Sci. Total Environ. 2019, 689, 1181–1191. [Google Scholar] [CrossRef]
- Ma, Q.-Q.; Yuan, L.-J.; Niu, Z.-D.; Zhao, J.; Huang, C. Microbial Community Structure of Activated Sludge and its Response to Environmental Factors. Huan Jing Ke Xue Huanjing Kexue 2021, 42, 3886–3893. [Google Scholar] [CrossRef]
- Lou, T.; Peng, Z.; Jiang, K.; Niu, N.; Wang, J.; Liu, A. Nitrogen removal characteristics of biofilms in each area of a full-scale AAO oxidation ditch process. Chemosphere 2022, 302, 134871. [Google Scholar] [CrossRef]
- Liu, F.; Qian, G.; Zhao, X.; Hu, X. Mechanism insights into the nitrogen removal of bio-augmented AAO: Specifically focusing on the nitrogen metabolic pathways and microbial taxa-functional genes associations. J. Water Process Eng. 2022, 50, 103245. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, L.; Li, Z.-H.; Zhang, X.; Leung, K.M.Y.; Sheng, G.-P. Extracellular polymeric substances (EPS) associated extracellular antibiotic resistance genes in activated sludge along the AAO process: Distribution and microbial secretors. Sci. Total Environ. 2022, 816, 151575. [Google Scholar] [CrossRef]
- Yan, X.; He, M.; Zheng, J.; Zhu, T.; Zou, Z.; Tang, B.; Yu, Y.; Mai, B. Tris (1,3-dichloro-2-propyl) phosphate exposure disrupts the gut microbiome and its associated metabolites in mice. Environ. Int. 2021, 146, 106256. [Google Scholar] [CrossRef]
- Wang, D.; Yan, S.; Yan, J.; Teng, M.; Meng, Z.; Li, R.; Zhou, Z.; Zhu, W. Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis. Environ. Pollut. 2019, 246, 630–638. [Google Scholar] [CrossRef]
- An, W.; Guo, F.; Song, Y.; Gao, N.; Bai, S.; Dai, J.; Wei, H.; Zhang, L.; Yu, D.; Xia, M.; et al. Comparative genomics analyses on EPS biosynthesis genes required for floc formation of Zoogloea resiniphila and other activated sludge bacteria. Water Res. 2016, 102, 494–504. [Google Scholar] [CrossRef]
- McMahon, K.D.; Jenkins, D.; Keasling, J.D. Polyphosphate kinase genes from activated sludge carrying out enhanced biological phosphorus removal. Water Sci. Technol. 2002, 46, 155–162. [Google Scholar] [CrossRef]
- Chen, Y.; Geng, N.; Hu, T.; Baeyens, J.; Wang, S.; Su, H. Adaptive regulation of activated sludge’s core functional flora based on granular internal spatial microenvironment. J. Environ. Manag. 2022, 319, 115714. [Google Scholar] [CrossRef]
- Ding, S.; Dan, S.F.; Liu, Y.; He, J.; Zhu, D.; Jiao, L. Importance of ammonia nitrogen potentially released from sediments to the development of eutrophication in a plateau lake. Environ. Pollut. 2022, 305, 119275. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- He, S.; Gall, D.L.; McMahon, K.D. “Candidatus accumulibacter” population structure in enhanced biological phosphorus removal Sludges as revealed by polyphosphate kinase genes. Appl. Environ. Microbiol. 2007, 73, 5865–5874. [Google Scholar] [CrossRef]
- Oehmen, A.; Lemos, P.C.; Carvalho, G.; Yuan, Z.; Keller, J.; Blackall, L.L.; Reis, M.A.M. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007, 41, 2271–2300. [Google Scholar] [CrossRef]
- Pontiroli, A.; Rizzi, A.; Simonet, P.; Daffonchio, D.; Vogel, T.M.; Monier, J.-M. Visual Evidence of Horizontal Gene Transfer between Plants and Bacteria in the Phytosphere of Transplastomic Tobacco. Appl. Environ. Microbiol. 2009, 75, 3314–3322. [Google Scholar] [CrossRef] [PubMed]
- Chee-Sanford, J.C.; Mackie, R.I.; Koike, S.; Krapac, I.G.; Lin, Y.-F.; Yannarell, A.C.; Maxwell, S.; Aminov, R.I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J. Environ. Qual. 2009, 38, 1086–1108. [Google Scholar] [CrossRef] [PubMed]
- Galvin, S.; Boyle, F.; Hickey, P.; Vellinga, A.; Morris, D.; Cormican, M. Enumeration and Characterization of Antimicrobial-Resistant Escherichia coli Bacteria in Effluent from Municipal, Hospital, and Secondary Treatment Facility Sources. Appl. Environ. Microbiol. 2010, 76, 4772–4779. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Wong, K.; Xagoraraki, I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011, 45, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Perez-Bou, L.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J.; Correa-Galeote, D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. Environ. Pollut. 2024, 342, 123115. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, L.; Meng, S.; Wang, Y.; Yu, B.; Wang, J. Anaerobic membrane bioreactor for real antibiotic pharmaceutical wastewater treatment: Positive effect of fouling layer on antibiotics and antibiotic resistance genes removals. J. Clean. Prod. 2023, 409, 137234. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef]
- Zhou, Y.; Leong, S.Y.; Li, Q. Modified biochar for removal of antibiotics and antibiotic resistance genes in the aqueous environment: A review. J. Water Process Eng. 2023, 55, 104222. [Google Scholar] [CrossRef]
Physical and Chemical Properties | Temperature (°C) | pH | BOD5 (mg/L) | COD (mg/L) | TP (mg/L) | TN (mg/L) | AN (mg/L) |
---|---|---|---|---|---|---|---|
Upstream | 11.4 | 6.8 | 10 | 12.5 | 0.079 | 24.93 | 3.669 |
Downstream | 10.9 | 6.9 | 43 | 100 | 0.242 | 25.13 | 0.524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, W.; Sajnani, S.; Zhou, M.; Zhu, H.; Xu, Y. Evaluating the Ecological Impact of Wastewater Discharges on Microbial and Contaminant Dynamics in Rivers. Water 2024, 16, 377. https://doi.org/10.3390/w16030377
Jing W, Sajnani S, Zhou M, Zhu H, Xu Y. Evaluating the Ecological Impact of Wastewater Discharges on Microbial and Contaminant Dynamics in Rivers. Water. 2024; 16(3):377. https://doi.org/10.3390/w16030377
Chicago/Turabian StyleJing, Wenjie, Shahdev Sajnani, Mengting Zhou, Hongfei Zhu, and Ya Xu. 2024. "Evaluating the Ecological Impact of Wastewater Discharges on Microbial and Contaminant Dynamics in Rivers" Water 16, no. 3: 377. https://doi.org/10.3390/w16030377
APA StyleJing, W., Sajnani, S., Zhou, M., Zhu, H., & Xu, Y. (2024). Evaluating the Ecological Impact of Wastewater Discharges on Microbial and Contaminant Dynamics in Rivers. Water, 16(3), 377. https://doi.org/10.3390/w16030377