Exploring Key Aspects of Sea Level Rise and Their Implications: An Overview
Abstract
:1. Introduction
2. Contributing Factors
2.1. Global Factors
2.2. Regional Factors
2.2.1. Climatic Drivers
2.2.2. Non-Climatic Drivers
3. Impacts
3.1. Physical Impacts
3.2. Socioeconomic Impacts
3.3. Environmental, Ecological, and Chemical Impacts
4. Coastal Assessment
4.1. Coastal Impact Modelling
4.2. Coastal Vulnerability Assessment
5. Mitigation and Adaptation Measures (MAM)
5.1. Structural Adaptation Measures
- Seawall: a protection structure used to protect the coastal landform from the impact of SLR [42].
- Breakwater: used to protect coastal zone areas and beach material from strong wave actions. It also enables extending the beach area for different human/economic activities. Breakwaters are built either perpendicular or parallel to the beach according to the beach’s nature, to provide maximum protection. The elevation of the breakwater should be determined according to the height of the local maximum tidal wave [42].
- Dike: structures built along the coast to protect against high wave actions and flooding [11]
- Dunes: Piles of sand and/or other materials that are formed due to either natural causes such as wind actions or built constructions (filled with artificial material) to reduce the impact of wave actions and coastal erosion [69].
- Beach Nourishment: a structural measure that is implemented by filling up the impacted areas with artificial material to protect the coastal areas from the impact of SLR. Beach nourishment is costly and may cause a negative impact on the environment; therefore, it is usually implemented after conducting assessments studies and strategical evaluations of the affected areas [11].
5.2. Non-Structural Adaptation Measures
6. Sea Level Changes in the Arabian Gulf
7. Discussion and Conclusions
- Uncertainties associated with global contributing factors should be properly incorporated into GMSL and RMSL projections, and updated versions of sea level budget should be used (as per data availability)
- GMSL is not uniformly distributed globally; hence, time and location dimensions should be considered when estimating individual contributing factors for SLR projections.
- The impacts of geological processes and the resulting post-effects should be considered in RMSL analyses.
- Geomorphological changes on coastal zones due to anthropogenic interventions should be isolated from SLR impacts during coastal assessment studies as changes caused prior can surpass the latter, leading to false results and interpretations of the current status.
- The lack of available data are limiting studies on SLR impacts on ecosystems and chemical aspects (e.g., groundwater contamination, and seawater pollution after flooding and natural disasters).
- There is a limit to the extent of considering historical data as reliable when forecasting future SLR, where significant changes of trends in climatic events and GMSL are evident (noting that historical data are not sufficient on their own in forecasting future SLR and other factors and their associated uncertainties must be considered).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SLR | Sea level rise |
GMSL | Global mean sea level |
RMSL | Relative or regional mean sea level |
IPCC | Intergovernmental Panel on Climate Change |
SST | sea surface temperature |
References
- Titus, J.G.; Barth, M.C.; Gibbs, M.J.; Hoffman, J.S.; Kenney, M. An Overview of the Causes and Effects of Sea Level Rise; Van Nostrand Reinhold: London, UK, 1984. [Google Scholar]
- Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 2016, 6, 360–369. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; IPCC: Geneva, Switzerland, 2022; AR6. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes Jara, M.; Deconto, R.M.; Ghosh, T. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Chapter Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Noor, N.M.; Abdul Maulud, K.N. Coastal vulnerability: A brief review on integrated assessment in southeast Asia. J. Mar. Sci. Eng. 2022, 10, 595. [Google Scholar] [CrossRef]
- Hall, J.A.; Gill, S.; Obeysekera, J.; Sweet, W.; Knuuti, K.; Marburger, J. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide; Technical Report; U.S. Department of Defense, Strategic Environmental Research and Development Program: Washington, DC, USA, 2016.
- Wright, L.D.; Caruson, K.; D Elia, C.; Draayer, J.; Nichols, R.; Weiss, R.; Zarillo, G. Assessing and Planning for the Impacts of Storms, Flooding and Sea Level Rise on Vulnerable Gulf of Mexico Coastal Communities: A White Paper. In Proceedings of the Global Oceans 2020: Singapore–US Gulf Coast, Biloxi, MI, USA, 5–30 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Bosello, F.; De Cian, E. Climate change, sea level rise, and coastal disasters. A review of modeling practices. Energy Econ. 2014, 46, 593–605. [Google Scholar] [CrossRef]
- Sweet, W.V.; Hamlington, B.D.; Kopp, R.E.; Weaver, C.P.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines; Technical Report NOAA Technical Report NOS 01; National Oceanic and Atmospheric Administration, National Ocean Service: Silver Spring, MD, USA, 2022.
- Matos, F.A.; Alves, F.; Coelho, C.; Lima, M.; Vizinho, A. Participatory Approach to Build Up a Municipal Strategy for Coastal Erosion Mitigation and Adaptation to Climate Change. J. Mar. Sci. Eng. 2022, 10, 1718. [Google Scholar] [CrossRef]
- Dedekorkut-Howes, A.; Torabi, E.; Howes, M. When the tide gets high: A review of adaptive responses to sea level rise and coastal flooding. J. Environ. Plan. Manag. 2020, 63, 2102–2143. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Etkins, R.; Epstein, E.S. The rise of global mean sea level as an indication of climate change. Science 1982, 215, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Cazenave, A.; Le Cozannet, G. Sea level rise and its coastal impacts. Earth’s Future 2014, 2, 15–34. [Google Scholar] [CrossRef]
- Slangen, A.; Adloff, F.; Jevrejeva, S.; Leclercq, P.W.; Marzeion, B.; Wada, Y.; Winkelmann, R. Integrative Study of the Mean Sea Level and Its Components; Chapter A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales; Springer International Publishing: Cham, Switzerland, 2017; pp. 395–416. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Frederikse, T.; Kopp, R.; Le Cozannet, G.; Jackson, L.; Van De Wal, R. Probabilistic sea level projections at the coast by 2100. Surv. Geophys. 2019, 40, 1673–1696. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hanson, S.E.; Lowe, J.A.; Warrick, R.A.; Lu, X.; Long, A.J.; Carter, T. Constructing Sea-Level Scenarios for Impact and Adaptation Assessment of Coastal Areas: A Guidance Document; Technical Report; Supporting Material, Intergovernmental Panel on Climate Change Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA): Geneva, Switzerland, 2011. [Google Scholar]
- Trenberth, K.E. The definition of el nino. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef]
- Dieng, H.B.; Cazenave, A.; Meyssignac, B.; Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 2017, 44, 3744–3751. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.; Chen, Q.; Geng, J. Revisiting sea-level budget by considering all potential impact factors for global mean sea-level change estimation. Sci. Rep. 2022, 12, 10251. [Google Scholar] [CrossRef]
- Carson, M.; Kohl, A.; Stammer, D.; Slangen, A.A.; Katsman, C.; van de Wal, R.W.; Church, J.; White, N. Coastal sea level changes, observed and projected during the 20th and 21st century. Clim. Change 2016, 134, 269–281. [Google Scholar] [CrossRef]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and Regional Sea Level Rise Scenarios for the United States; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2017.
- Palanisamy, H.; Cazenave, A.; Meyssignac, B.; Soudarin, L.; Wöppelmann, G.; Becker, M. Regional sea level variability, total relative sea level rise and its impacts on islands and coastal zones of Indian Ocean over the last sixty years. Glob. Planet. Change 2014, 116, 54–67. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Melet, A.; Marcos, M.; Ray, R.D.; Woppelmann, G.; Sasaki, Y.N.; Cirano, M.; Hibbert, A.; Huthnance, J.M.; Monserrat, S. Forcing factors affecting sea level changes at the coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef]
- Kopp, R.E.; Hay, C.C.; Little, C.M.; Mitrovica, J.X. Geographic variability of sea-level change. Curr. Clim. Change Rep. 2015, 1, 192–204. [Google Scholar] [CrossRef]
- Chini, N.; Stansby, P.; Leake, J.; Wolf, J.; Roberts-Jones, J.; Lowe, J. The impact of sea level rise and climate change on inshore wave climate: A case study for East Anglia (UK). Coast. Eng. 2010, 57, 973–984. [Google Scholar] [CrossRef]
- Hang, Y. Numerical Study of Coastal Erosion Based on Sea Level Rise. In Proceedings of the International Conference on Hydraulic and Civil Engineering: Deep Space Intelligent Development and Utilization Forum (ICHCE), Xi’an, China, 25–27 November 2022; Number 1. pp. 495–498. [Google Scholar] [CrossRef]
- Seenipandi, K.; Ramachandran, K.; Chandrasekar, N. Modeling of coastal vulnerability to sea-level rise and shoreline erosion using modified CVI model. In Remote Sensing of Ocean and Coastal Environments; Elsevier: Amsterdam, The Netherlands, 2021; pp. 315–340. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Sudha Rani, N.; Rice, L.; Sur, K.; Thayaparan, M.; Kulatunga, U.; Rege, R.; Yenneti, K.; Campos, L.C. A systematic review of coastal vulnerability assessment studies along Andhra Pradesh, India: A critical evaluation of data gathering, risk levels and mitigation strategies. Water 2019, 11, 393. [Google Scholar] [CrossRef]
- Mullick, M.R.A.; Tanim, A.; Islam, S.S. Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospatial techniques. Ocean. Coast. Manag. 2019, 174, 154–169. [Google Scholar] [CrossRef]
- Ruzic, I.; Benac, C.; Jovancevic, S.D.; Radisic, M. The application of UAV for the analysis of geological hazard in Krk Island, Croatia, Mediterranean Sea. Remote Sens. 2021, 13, 1790. [Google Scholar] [CrossRef]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal sensitivity/vulnerability characterization and adaptation strategies: A review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Giannakidis, A.; Giakoumidakis, G.; Mania, K. 3D photorealistic scientific visualization of tsunami waves and sea level rise. In Proceedings of the 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, Santorini, Greece, 14–17 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 167–172. [Google Scholar] [CrossRef]
- Owusu, C.; Snigdha, N.J.; Martin, M.T.; Kalyanapu, A.J. PyGEE-SWToolbox: A Python Jupyter Notebook Toolbox for Interactive Surface Water Mapping and Analysis Using Google Earth Engine. Sustainability 2022, 14, 2557. [Google Scholar] [CrossRef]
- Meyssignac, B.; Cazenave, A. Sea level: A review of present-day and recent-past changes and variability. J. Geodyn. 2012, 58, 96–109. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Zhang, X.; Zhou, Y.; Tian, B.; Tang, Q. Integrated modeling analysis of estuarine responses to extreme hydrological events and sea-level rise. Estuar. Coast. Shelf Sci. 2021, 261, 107555. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef]
- Hereher, M.E. Assessment of climate change impacts on sea surface temperatures and sea level rise—The Arabian Gulf. Climate 2020, 8, 50. [Google Scholar] [CrossRef]
- Faridatunnisa, M.; Heliani, L.S. Study of Sea Level Rise Using Tide Gauge Data Year 1996 to 2015 at Semarang and Prigi Stations. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 18–19 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Zou, F.; Tenzer, R.; Fok, H.S.; Meng, G.; Zhao, Q. The sea-level changes in Hong Kong from tide-gauge records and remote sensing observations over the last seven decades. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6777–6791. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V.; Alizad, K.; Wang, D. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth’s Future 2015, 3, 159–181. [Google Scholar] [CrossRef]
- Subraelu, P.; Ebraheem, A.A.; Sherif, M.; Sefelnasr, A.; Yagoub, M.; Rao, K.N. Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective. Land 2022, 11, 2024. [Google Scholar] [CrossRef]
- Ellison, J.C. Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetl. Ecol. Manag. 2015, 23, 115–137. [Google Scholar] [CrossRef]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.W.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L.; et al. The causes of sea-level rise since 1900. Nature 2020, 584, 393–397. [Google Scholar] [CrossRef]
- El-Asmar, H.M.; Taha, M.M. Monitoring Coastal Changes and Assessing Protection Structures at the Damietta Promontory, Nile Delta, Egypt, to Secure Sustainability in the Context of Climate Changes. Sustainability 2022, 14, 15415. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Shi, P.; Shang, Z.; Li, Y.; Wang, H. The impact of sea-level rise on the coast of Tianjin-Hebei, China. China Geol. 2019, 2, 26–39. [Google Scholar] [CrossRef]
- Rovere, A.; Stocchi, P.; Vacchi, M. Eustatic and relative sea level changes. Curr. Clim. Change Rep. 2016, 2, 221–231. [Google Scholar] [CrossRef]
- Zanchettin, D.; Bruni, S.; Raicich, F.; Lionello, P.; Adloff, F.; Androsov, A.; Antonioli, F.; Artale, V.; Carminati, E.; Ferrarin, C. Sea-level rise in Venice: Historic and future trends. Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- Aguilera-Vidal, M.; Munoz-Perez, J.J.; Contreras, A.; Contreras, F.; Lopez-Garcia, P.; Jigena, B. Increase in the Erosion Rate due to the Impact of Climate Change on Sea Level Rise: Victoria Beach, a Case Study. J. Mar. Sci. Eng. 2022, 10, 1912. [Google Scholar] [CrossRef]
- Aryal, B.; Escarzaga, S.M.; Vargas Zesati, S.A.; Velez-Reyes, M.; Fuentes, O.; Tweedie, C. Semi-automated semantic segmentation of arctic shorelines using very high-resolution airborne imagery, spectral indices and weakly supervised machine learning approaches. Remote Sens. 2021, 13, 4572. [Google Scholar] [CrossRef]
- Aldogom, D.; Albesher, S.; Al Mansoori, S.; Nazzal, T. Assessing Coastal Land Dynamics Along UAE Shoreline Using GIS and Remote Sensing Techniques. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 540, p. 012031. [Google Scholar] [CrossRef]
- Bengoufa, S.; Niculescu, S.; Mihoubi, M.K.; Belkessa, R.; Rami, A.; Rabehi, W.; Abbad, K. Machine learning and shoreline monitoring using optical satellite images: Case study of the Mostaganem shoreline, Algeria. J. Appl. Remote Sens. 2021, 15, 026509. [Google Scholar] [CrossRef]
- Onat, Y.; Marchant, M.; Francis, O.P.; Kim, K. Coastal exposure of the Hawaiian Islands using GIS-based index modeling. Ocean. Coast. Manag. 2018, 163, 113–129. [Google Scholar] [CrossRef]
- Sudha Rani, N.; Satyanarayana, A.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Sarkar, N.; Rizzo, A.; Vandelli, V.; Soldati, M. A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot. Sustainability 2022, 14, 15994. [Google Scholar] [CrossRef]
- Kont, A.; Jaagus, J.; Aunap, R. Climate change scenarios and the effect of sea-level rise for Estonia. Glob. Planet. Change 2003, 36, 1–15. [Google Scholar] [CrossRef]
- Dean, R.; Houston, J. Determining shoreline response to sea level rise. Coast. Eng. 2016, 114, 1–8. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Garcin, M.; Yates, M.; Idier, D.; Meyssignac, B. Approaches to evaluate the recent impacts of sea-level rise on shoreline changes. Earth-Sci. Rev. 2014, 138, 47–60. [Google Scholar] [CrossRef]
- Smith, K.E.; Terrano, J.F.; Pitchford, J.L.; Archer, M.J. Coastal wetland shoreline change monitoring: A comparison of shorelines from high-resolution WorldView Satellite imagery, aerial Imagery, and field surveys. Remote Sens. 2021, 13, 3030. [Google Scholar] [CrossRef]
- Saleh, A.S.; Altaei, S.; Alkhaldi, F.K. Climate Change Implications on Small Island Developing States (SIDS): A Socioeconomic Perspective from the Kingdom of Bahrain. In Proceedings of the 2021 Third International Sustainability and Resilience Conference: Climate Change, Virtual, 15–17 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 39–44. [Google Scholar] [CrossRef]
- Sowe, M.A.; Sadhasivam, S.; Mostafa Mohamed, M.; Mohsen, S. Modeling the mitigation of seawater intrusion by pumping of brackish water from the coastal aquifer of Wadi Ham, UAE. Sustain. Water Resour. Manag. 2019, 5, 1435–1451. [Google Scholar] [CrossRef]
- Abdouli, K.A.; Hussein, K.; Ghebreyesus, D.; Sharif, H.O. Coastal runoff in the United Arab Emirates—The hazard and opportunity. Sustainability 2019, 11, 5406. [Google Scholar] [CrossRef]
- Pernetta, J.C. Impacts of climate change and sea-level rise on small island states: National and international responses. Glob. Environ. Change 1992, 2, 19–31. [Google Scholar] [CrossRef]
- Susnik, J.; Vamvakeridou-Lyroudia, L.S.; Baumert, N.; Kloos, J.; Renaud, F.G.; La Jeunesse, I.; Mabrouk, B.; Savic, D.A.; Kapelan, Z.; Ludwig, R. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt. Sci. Total Environ. 2015, 503, 279–288. [Google Scholar] [CrossRef]
- Parthasarathy, K.; Deka, P.C. Remote sensing and GIS application in assessment of coastal vulnerability and shoreline changes: A review. ISH J. Hydraul. Eng. 2021, 27, 588–600. [Google Scholar] [CrossRef]
- Gesch, D.B. Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure. Front. Earth Sci. 2018, 6, 230. [Google Scholar] [CrossRef]
- Abou-Mahmoud, M.M.E. Assessing coastal susceptibility to sea-level rise in Alexandria, Egypt. Egypt. J. Aquat. Res. 2021, 47, 133–141. [Google Scholar] [CrossRef]
- Carbognin, L.; Teatini, P.; Tomasin, A.; Tosi, L. Global change and relative sea level rise at Venice: What impact in term of flooding. Clim. Dyn. 2010, 35, 1039–1047. [Google Scholar] [CrossRef]
- Winters, M.A.; Leslie, B.; Sloane, E.B.; Gallien, T.W. Observations and Preliminary Vulnerability Assessment of a Hybrid Dune-Based Living Shoreline. J. Mar. Sci. Eng. 2020, 8, 920. [Google Scholar] [CrossRef]
- Arthur, R.M.; Garland, G. Predicting the Extent of Inundation due to Sea-Level Rise: Al Hamra Development, Ras Al Khaimah, UAE. A Pilot Project. Misc. Geogr. 2016, 20, 25–31. [Google Scholar] [CrossRef]
- Maulud, K.N.A.; Rafar, R.M. Determination the impact of sea level rise to shoreline changes using GIS. In Proceedings of the 2015 International Conference on Space Science and Communication (IconSpace), Langkawi, Malaysia, 10–12 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 352–357. [Google Scholar] [CrossRef]
- Barboza, E.G.; Dillenburg, S.R.; do Nascimento Ritter, M.; Angulo, R.J.; da Silva, A.B.; da Camara Rosa, M.L.C.; Caron, F.; de Souza, M.C. Holocene sea-level changes in southern Brazil based on high-resolution radar stratigraphy. Geosciences 2021, 11, 326. [Google Scholar] [CrossRef]
- Dwarakish, G.; Nithyapriya, B. Application of soft computing techniques in coastal study—A review. J. Ocean. Eng. Sci. 2016, 1, 247–255. [Google Scholar] [CrossRef]
- Vishwanathan, S.; Murty, M.N. SSVM: A simple SVM algorithm. In Proceedings of the 2002 International Joint Conference on Neural Networks, Honolulu, HI, USA, 12–17 May 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 3, pp. 2393–2398. [Google Scholar] [CrossRef]
- Fitz Gerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef]
- Ku, H.; Kim, T.; Song, Y.i. Coastal vulnerability assessment of sea-level rise associated with typhoon-induced surges in South Korea. Ocean. Coast. Manag. 2021, 213, 105884. [Google Scholar] [CrossRef]
- Yesudian, A.N.; Dawson, R.J. Global analysis of sea level rise risk to airports. Clim. Risk Manag. 2021, 31, 100266. [Google Scholar] [CrossRef]
- Salimi, M.; Al-Ghamdi, S.G. Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustain. Cities Soc. 2020, 54, 101948. [Google Scholar] [CrossRef]
- Chadwick, B.; Flick, R.; Helly, J.; Nishikawa, T.; Wang, P.F.; O Reilly, W.; Guza, R.; Bromirski, P.; Young, A.; Crampton, W. A framework for sea level rise vulnerability assessment for southwest US military installations. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Marfai, M.A.; King, L. Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Environ. Geol. 2008, 54, 1235–1245. [Google Scholar] [CrossRef]
- Kebede, A.S.; Nicholls, R.J.; Hanson, S.; Mokrech, M. Impacts of Climate Change and Sea-Level Rise: A Preliminary Case Study of Mombasa, Kenya. J. Coast. Res. 2010, 28, 8–19. [Google Scholar] [CrossRef]
- Lincoln, S.; Buckley, P.; Howes, E.L.; Maltby, K.M.; Pinnegar, J.K.; Ali, T.S.; Alosairi, Y.; Al-Ragum, A.; Baglee, A.; Balmes, C.O.; et al. A Regional Review of Marine and Coastal Impacts of Climate Change on the ROPME Sea Area. Sustainability 2021, 13, 13810. [Google Scholar] [CrossRef]
- Scavo, A.N.; Singh, R.P. Effect of climate change on California fish species. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 6070–6073. [Google Scholar] [CrossRef]
- Zuo, X.; Su, F.; Yu, K.; Wang, Y.; Wang, Q.; Wu, H. Spatially Modeling the Synergistic Impacts of Global Warming and Sea-Level Rise on Coral Reefs in the South China Sea. Remote Sens. 2021, 13, 2626. [Google Scholar] [CrossRef]
- Mohanty, A. Impacts of climate change on human health and agriculture in recent years. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Mcleod, E.; Poulter, B.; Hinkel, J.; Reyes, E.; Salm, R. Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean. Coast. Manag. 2010, 59, 507–517. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A. ASTER GDEM Version 3 Validation Report; Japan Space System: Tokyo, Japan, 2015. [Google Scholar]
- Wandinger, U. Introduction to Lidar. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Weitkamp, C., Ed.; Springer: New York, NY, USA, 2005; pp. 1–18. [Google Scholar] [CrossRef]
- Warrick, R.A.; Ye, W.; Kouwenhoven, P.; Hay, J.; Cheatham, C. New developments of the SimCLIM model for simulating adaptation to risks arising from climate variability and change. In Proceedings of the International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Melbourne, Australia, 12–15 December 2005; pp. 170–176. [Google Scholar]
- Fox-Kemper, B.; Adcroft, A.; Boning, C.; Chassignet, E.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.M.; Gerdes, R.; Greatbatch, R.J.; et al. Challenges and Prospects in Ocean Circulation Models. Front. Mar. Sci. 2019, 6, 65. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Metzger, E.J.; Smedstad, O.M.; Cummings, J.A.; Halliwell, G.R.; Bleck, R.; Baraille, R.; Wallcraft, A.J.; Lozano, C. US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 2009, 22, 64–75. [Google Scholar] [CrossRef]
- Pycroft, J.; Abrell, J.; Ciscar, J.C. The global impacts of extreme sea-level rise: A comprehensive economic assessment. Environ. Resour. Econ. 2016, 64, 225–253. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jimenez, J.A.; Dastgheib, A. Comparison of coastal vulnerability index applications for Barcelona Province. Ocean. Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Luccioni, A.; Schmidt, V.; Vardanyan, V.; Bengio, Y. Using artificial intelligence to visualize the impacts of climate change. IEEE Comput. Graph. Appl. 2021, 41, 8–14. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 2019, 7, 36322–36333. [Google Scholar] [CrossRef]
- Tabassum, A.; Rabbani, M.; Omar, S.B. An approach to study on time series components and by using them to enumerate the height of sea level alteration for both Global Mean Sea Level(GMSL) and Bay of Bengal(BOB). In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Krishnamurthy, V.N.D.; Degadwala, S.; Vyas, D. Forecasting Future Sea Level Rise: A Data-driven Approach using Climate Analysis. In Proceedings of the 2023 2nd International Conference on Edge Computing and Applications (ICECAA), Coimbatore, India, 20–21 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 646–651. [Google Scholar] [CrossRef]
- Elneel, L.; Zitouni, M.S.; Mukhtar, H.; Al-Ahmad, H. Forecasting Global Mean Sea Level Rise using Autoregressive Models. In Proceedings of the 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Istanbul, Turkey, 4–7 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Hassan, K.M.A.; Haque, M.A.; Ahmed, S. Comparative Study of Forecasting Global Mean Sea Level Rising using Machine Learning. In Proceedings of the 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), Khulna, Bangladesh, 14–16 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bonetti, J.; Rogers, K.; Woodroffe, C.D. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean. Coast. Manag. 2016, 123, 18–43. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G.R. Application of a coastal vulnerability index. A case study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef]
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the US Atlantic Coast; Technical Report; US Geological Survey: Asheville, NC, USA, 1999. [CrossRef]
- Lopez Royo, M.; Ranasinghe, R.; Jimenez, J.A. A rapid, low-cost approach to coastal vulnerability assessment at a national level. J. Coast. Res. 2016, 32, 932–945. [Google Scholar] [CrossRef]
- Norezan, N.N.M.; Ma’arof, I.; Sulaiman, S.A. Offshore Vulnerability and Sustainability Assessment Affected by Sea Breakwater Construction using Geomatics Engineering Technology. In Proceedings of the 2021 IEEE 12th Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 7 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 104–109. [Google Scholar] [CrossRef]
- Mclaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Cooper, J.; McLaughlin, S. Contemporary multidisciplinary approaches to coastal classification and environmental risk analysis. J. Coast. Res. 1998, 14, 512–524. [Google Scholar]
- Feindouno, S.; Goujon, M. The Retrospective Economic Vulnerability Index, 2015 Update; Ferdi Working Paper; Ferdi: New York, NY, USA, 2016. [Google Scholar]
- Al-Awadhi, T.; Mansour, S.; Hereher, M. Assessment of coastal sensitivity to non-eustatic sea level rise: A case study on Muscat coast—Sultanate of Oman. Arab. J. Geosci. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Bagdanaviciute, I.; Kelpaaite, L.; Soomere, T. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean. Coast. Manag. 2015, 104, 124–135. [Google Scholar] [CrossRef]
- Hereher, M.; Al-Awadhi, T.; Al-Hatrushi, S.; Charabi, Y.; Mansour, S.; Al-Nasiri, N.; Sherief, Y.; El-Kenawy, A. Assessment of the coastal vulnerability to sea level rise: Sultanate of Oman. Environ. Earth Sci. 2020, 79, 1–12. [Google Scholar] [CrossRef]
- Oloyede, M.O.; Williams, A.B.; Ode, G.O.; Benson, N.U. Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline. Sustainability 2022, 14, 2097. [Google Scholar] [CrossRef]
- Ennouali, Z.; Fannassi, Y.; Lahssini, G.; Benmohammadi, A.; Masria, A. Mapping Coastal vulnerability using machine learning algorithms: A case study at North coastline of Sebou estuary, Morocco. Reg. Stud. Mar. Sci. 2023, 60, 102829. [Google Scholar] [CrossRef]
- Schernewski, G.; Voeckler, L.N.; Lambrecht, L.; Robbe, E.; Schumacher, J. Building with Nature—Ecosystem Service Assessment of Coastal-Protection Scenarios. Sustainability 2022, 14, 15737. [Google Scholar] [CrossRef]
- Fahlstrom, P.G.; Gleason, T.J. Introduction to UAV Systems, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 1–15. [Google Scholar] [CrossRef]
- Shuvo, S.S.; Yilmaz, Y.; Bush, A.; Hafen, M. Scenario Planning for Sea Level Rise via Reinforcement Learning. In Proceedings of the 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, ON, Canada, 11–14 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Fu, X. Measuring local sea-level rise adaptation and adaptive capacity: A national survey in the United States. Cities 2020, 102, 102717. [Google Scholar] [CrossRef]
- Da Lio, C.; Tosi, L. Vulnerability to relative sea-level rise in the Po river delta (Italy). Estuar. Coast. Shelf Sci. 2019, 228, 106379. [Google Scholar] [CrossRef]
- Ministry of Climate Change and Environment. UAE Climate Risk Assessment and Adaptation Measures in Key Sectors: Health, Energy, Infrastructure and Environment; Technical Report National Climate Change Adaptation Program; Ministry of Climate Change and Environment: Dubai, United Arab Emirates, 2019.
- Alosairi, Y.; Alsulaiman, N.; Rashed, A.; Al-Houti, D. World record extreme sea surface temperatures in the northwestern Arabian/Persian Gulf verified by in situ measurements. Mar. Pollut. Bull. 2020, 161, 111766. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M. Trend analysis and variations of sea surface temperature and chlorophyll-a in the Persian Gulf. Mar. Pollut. Bull. 2020, 156, 111267. [Google Scholar] [CrossRef]
- Bruciaferri, D.; Tonani, M.; Ascione, I.; Al Senafi, F.; O’Dea, E.; Hewitt, H.T.; Saulter, A. GULF18, a high-resolution NEMO-based tidal ocean model of the Arabian/Persian Gulf. Geosci. Model Dev. Discuss. 2022, 2022, 1–38. [Google Scholar] [CrossRef]
- Al-Subhi, A.M.; Abdulla, C.P. Sea-Level Variability in the Arabian Gulf in Comparison with Global Oceans. Remote Sens. 2021, 13, 4524. [Google Scholar] [CrossRef]
- Al-Maamary, H.M.; Kazem, H.A.; Chaichan, M.T. Climate change: The game changer in the Gulf Cooperation Council Region. Renew. Sustain. Energy Rev. 2017, 76, 555–576. [Google Scholar] [CrossRef]
- Chow, A.C.; Sun, J. Combining Sea level rise inundation impacts, tidal flooding and extreme wind events along the Abu Dhabi coastline. Hydrology 2022, 9, 143. [Google Scholar] [CrossRef]
- Campos, E.J.; Gordon, A.L.; Kjerfve, B.; Vieira, F.; Cavalcante, G. Freshwater budget in the Persian (Arabian) Gulf and exchanges at the Strait of Hormuz. PLoS ONE 2020, 15, e0233090. [Google Scholar] [CrossRef]
- Lokier, S.W.; Bateman, M.D.; Larkin, N.R.; Rye, P.; Stewart, J.R. Late Quaternary sea-level changes of the Persian Gulf. Quat. Res. 2015, 84, 69–81. [Google Scholar] [CrossRef]
- Vaughan, G.O.; Al-Mansoori, N.; Burt, J.A. The arabian gulf. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–23. [Google Scholar]
- Ministry of Climate Change and Environment. Adaptation of the UAEs Infrastructure to Climate Change; Technical Report National Climate Change Adaptation Program; Ministry of Climate Change and Environment: Dubai, United Arab Emirates, 2019.
Paper | Year | Region | Spatial Scale | Approach |
---|---|---|---|---|
[103] | 1999 | US Atlantic coast | National | CVI (geomorphology, shoreline change rate, coastal slope, regional SLR, mean significant wave height, and mean tidal range) |
[106] | 2010 | Northern Ireland | Local | CVI coastal characteristics (resilience and susceptibility) + coastal forcing + socioeconomic factors |
[110] | 2015 | Lithuania in the south-eastern Baltic Sea | Local | CVI are combined with DS (the outcome analytical hierarchical process (AHP)) |
[104] | 2016 | peninsular coastline of Spain | National | CVI (geomorphology, shoreline change rate, coastal slope, regional SLR, mean significant wave height, and mean tidal range) |
[101] | 2018 | Italy | Local | CVI with 10 parameters: (1) geologic (geomorphology, coastal slope, shoreline erosion/accretion, emerged beach width, and dune width), (2) physical process (regional SLR, mean significant wave height, and mean tide range), and (3) vegetation (width of vegetation behind the beach and Posidonia oceanica)) |
[53] | 2018 | Hawaiian Islands | Local | CVI and InVEST model to calculate the exposure index (EI). Parameters: bathymetry, shoreline geomorphology, regional SLR, wind and wave actions, LU/LC, and population |
[29] | 2019 | Andhra Pradesh (CAP) region in India | local | CVI (geomorphology, shoreline change rate, coastal slope, regional SLR, mean significant wave height, and mean tidal range) |
[30] | 2019 | Bangladesh | National | CVI method of Mclaughlin and Cooper (2010) [106] that consists of three sub-indices: (1) coastal characteristics vulnerability sub-index; (2) coastal forcing vulnerability sub-index, and (3) socioeconomic vulnerability sub-index |
[111] | 2020 | Sultanate of Oman | National | CVI (coastal geomorphology coastal slope, coastal elevation, tidal range, and bathymetry) |
[105] | 2021 | Malaysia’s east coast, Terengganu State beaches | Local | CVI of coastal vulnerabilities using Hammar–Klose and Thieler CVI rankings |
[28] | 2021 | South India | Regional | CVI with 10 parameters: geomorphology, shoreline erosion/accretion rate, coastal slope, regional SLR, mean significant wave height, mean tide range, storm wave run-up, regional elevation, LU/LC change, and mean wave height |
[76] | 2021 | South Korea | National | CVI of 3 main components: exposure (population density and age group distribution, coastal industrial facilities, and GRDP), sensitivity (inundated depth and impacted areas), and adaptive capacity (humans, emergency response and disaster management, relief fund, and public officials) |
[112] | 2022 | Nigeria | National | CVI using physical and socioeconomic parameters (geomorphology, coastal slope, bathymetry, wave height, mean tidal range, shoreline change rate, regional SLR, population, cultural heritage, LU/LC, and road network) |
[113] | 2023 | Northern area of the estuary of Sebou’ in Morocco | Local | CVI with machine learning algorithms (geomorphology, elevation, slope, shoreline change, natural habitat, SLR, maximum wave height, and tidal range) |
MAM Category | Type (# Papers) | Papers | Examples |
---|---|---|---|
Structural | Hard Structures (6) | [10,31,42,45,46,67,118] | Breakwaters, seawalls, dikes |
Soft Structures (2) | [31,69] | Dunes, beach nourishment | |
Eco-Based Structures (4) | [4,67,82,114] | Seagrass bed, wetlands & reef conversion and restoration | |
Non-Structural | Policies and Regulations (6) | [4,60,116,117,118,119] | Relocation, hazard mapping, public awareness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elneel, L.; Zitouni, M.S.; Mukhtar, H.; Galli, P.; Al-Ahmad, H. Exploring Key Aspects of Sea Level Rise and Their Implications: An Overview. Water 2024, 16, 388. https://doi.org/10.3390/w16030388
Elneel L, Zitouni MS, Mukhtar H, Galli P, Al-Ahmad H. Exploring Key Aspects of Sea Level Rise and Their Implications: An Overview. Water. 2024; 16(3):388. https://doi.org/10.3390/w16030388
Chicago/Turabian StyleElneel, Leena, M. Sami Zitouni, Husameldin Mukhtar, Paolo Galli, and Hussain Al-Ahmad. 2024. "Exploring Key Aspects of Sea Level Rise and Their Implications: An Overview" Water 16, no. 3: 388. https://doi.org/10.3390/w16030388
APA StyleElneel, L., Zitouni, M. S., Mukhtar, H., Galli, P., & Al-Ahmad, H. (2024). Exploring Key Aspects of Sea Level Rise and Their Implications: An Overview. Water, 16(3), 388. https://doi.org/10.3390/w16030388