Study on the Influence of Water Erosion on the Bearing Capacity and Function of the High Pile Foundation of the Wharf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wave Load and Scour Depth Calculation
2.1.1. Wave Load Calculation
2.1.2. Scour Mechanism
2.1.3. Local Scour Calculation
2.2. Bearing Capacity of Pile Foundation under Local Erosion
2.2.1. Vertical Stress Distribution of Soil around Piles under Erosion
2.2.2. Ultimate Soil Resistance Based on the p-y Curve
2.2.3. Stress History-Soil Parameter Variation
3. Results and Discussion
3.1. Model Test
3.2. Analysis of Test Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Whang, S.W.; Kim, S. Pile foundation design through the increased bearing capacity of extended end pile. J. Asian Archit. Build. Eng. 2017, 16, 395–402. [Google Scholar] [CrossRef]
- Kuwajima, K.; Hyodo, M.; Hyde, A.F. Pile bearing capacity factors and soil crushabiity. J. Geotech. Geoenviron. Eng. 2009, 135, 901–913. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, T.; Wu, Y. Soil drainage clogging mechanism under vacuum preloading: A review. Transp. Geotech. 2024, 45, 101178. [Google Scholar] [CrossRef]
- Zhang, X.; Du, D.; Man, T.; Ge, Z.; Huppert, H. Particle clogging mechanisms in hyporheic exchange with coupled lattice Boltzmann discrete element simulations. Phys. Fluids 2024, 36, 013312. [Google Scholar] [CrossRef]
- Li, J. Model Test and Numerical Simulation of Water Conservancy Foundation Bearing Capacity. Comput. Intell. Neurosci. 2022. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, Y.; Hu, X.M.; Han, Y.L.; Zhang, X.P.; Du, L.Z. Application of GA-BP neural network optimized by Grey Verhulst model around settlement prediction of foundation pit. Geofluids 2021, 2021, 5595277. [Google Scholar] [CrossRef]
- Li, W.; Huang, B.; Hou, J. Experimental study on water flow characteristics of pile group in high pile wharf. J. Xinjiang Agric. Univ. 2004, 27, 78–81. [Google Scholar]
- do Carmo, J.S.A. Experimental study on local scour around bridge piers in rivers. WIT Trans. Ecol. Environ. 2005, 83. [Google Scholar] [CrossRef]
- Tang, S.F.; Li, B. Numerical simulation of tidal flow under the influence of pile resistance. China Harb. Constr. 2001, 5, 25–29. [Google Scholar]
- Zhao, S.; Wang, K.; Wu, J. Cumulative deformation characteristics of inclined single pile in sand under horizontal cyclic load. J. Zhejiang Univ. (Eng. Technol.) 2022, 56, 1310–1319. [Google Scholar]
- Zhang, X.; Ye, P.; Wu, Y.; Zhai, E. Experimental study on simultaneous heat-water-salt migration of bare soil subjected to evaporation. J. Hydrol. 2022, 609, 127710. [Google Scholar] [CrossRef]
- Wang, L.; Lv, Z.D.; Wang, F.; Zhao, Z.; Dong, X.L. Underwater Shaking-Table Investigation of Complex Deep-Water Pile-Cap Foundation for Xihoumen Rail-cum-Road Bridge. Shock. Vib. 2023, 2023, 5409006. [Google Scholar] [CrossRef]
- Zhang, X.; Du, D.; Wu, Y.; Ye, P.; Xu, Y. Theoretical and analytical solution on vacuum preloading consolidation of landfill sludge treated by freeze–thaw and chemical preconditioning. Acta Geotech. 2023, 19, 221–238. [Google Scholar] [CrossRef]
- Liu, C.; Du, L.; Zhang, X.; Wang, Y.; Hu, X.; Han, Y. A new rock brittleness evaluation method based on the complete stress-strain curve. Lithosphere 2021, 2021 (Special 4), 4029886. [Google Scholar] [CrossRef]
- Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H. Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 2014, 57, 122–131. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, D.; Li, J.; Jie, Y.; Ke, Z.; Li, J.; Wong, T. Evaluation of ultimate bearing capacity of pre-stressed high-strength concrete pipe pile embedded in saturated sandy soil based on in-situ test. Appl. Sci. 2020, 10, 6269. [Google Scholar] [CrossRef]
- Lee, I.M.; Lee, J.H. Prediction of pile bearing capacity using artificial neural networks. Comput. Geotech. 1996, 18, 189–200. [Google Scholar] [CrossRef]
- Józefiak, K.; Zbiciak, A.; Maślakowski, M.; Piotrowski, T. Numerical modelling and bearing capacity analysis of pile foundation. Procedia Eng. 2015, 111, 356–363. [Google Scholar] [CrossRef]
- Hight, D.W.; Lawrence, D.M.; Farquhar, G.B.; Mulligan, G.W.; Gue, S.S.; Potts, D.M. Evidence for scale effects in the end bearing capacity of open-ended piles in sand. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 1996. OTC-7975-MS. [Google Scholar]
- Xie, Y.; Liu, C.; Gao, S.; Tang, J.; Chen, Y. Lateral load bearing capacity of offshore high-piled wharf with batter piles. Ocean. Eng. 2017, 142, 377–387. [Google Scholar] [CrossRef]
- Mendoza, C.C.; Caicedo, B.; Cunha, R. Determination of vertical bearing capacity of pile foundation systems in tropical soils with uncertain and highly variable properties. J. Perform. Constr. Facil. 2017, 31, 04016068. [Google Scholar] [CrossRef]
- Qi, W.G.; Tian, J.K.; Zheng, H.Y.; Wang, H.Y.; Yang, J.; He, G.L.; Gao, F.P. Bearing capacity of the high-rise pile cap foundation for offshore wind turbines. In Sustainable Development of Critical Infrastructure; ASCE: Reston, VA, USA, 2014; pp. 413–420. [Google Scholar] [CrossRef]
- Zhou, J.J.; Yu, J.L.; Gong, X.N.; Zhang, R.H.; Yan, T.L. Influence of soil reinforcement on the uplift bearing capacity of a pre-stressed high-strength concrete pile embedded in clayey soil. Soils Found. 2019, 59, 2367–2375. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Bao, Z.X.; Ma, T.Z.; Lai, C.J. Testing and analysis of bearing capacity on pile foundation. Appl. Mech. Mater. 2014, 501, 234–237. [Google Scholar] [CrossRef]
- Koizumi, Y.; Ito, K. Field tests with regard to pile driving and bearing capacity of piled foundations. Soils Found. 1967, 7, 30–53. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Ko, J.; Won, J.; Lee, K. Bearing capacity analysis of open-ended piles considering the degree of soil plugging. Soils Found. 2015, 55, 1001–1014. [Google Scholar] [CrossRef]
- Knappett, J.A.; Madabhushi, S.P.G. Seismic bearing capacity of piles in liquefiable soils. Soils Found. 2009, 49, 525–535. [Google Scholar] [CrossRef]
- Darrigol, O. Joseph Boussinesq’s legacy in fluid mechanics. Comptes Rendus Mécanique 2017, 345, 427–445. [Google Scholar] [CrossRef]
- Chen, Q.N.; Zhao, M.H.; Zhou, G.H.; Zhang, Z.H. Bearing capacity and mechanical behavior of CFG pile composite foundation. J. Cent. South Univ. Technol. 2008, 15 (Suppl. S2), 45–49. [Google Scholar] [CrossRef]
- Lestari, L.L.; Propika, J.; Puspasari, A.D. Axial Bearing Capacity Analysis of Pile Foundation using Nakazawa Method. J. IPTEK 2020, 24, 45–52. [Google Scholar] [CrossRef]
- Hwang, U.S. Study on Bearing Capacity of Ultra High Strengh End Extended PHC Pile by Loading Test. J. Korea Acad. Ind. Coop. Soc. 2019, 20, 269–275. [Google Scholar] [CrossRef]
- Pham, T.A.; Ly, H.B.; Tran, V.Q.; Giap, L.V.; Vu, H.L.T.; Duong, H.A.T. Prediction of pile axial bearing capacity using artificial neural network and random forest. Appl. Sci. 2020, 10, 1871. [Google Scholar] [CrossRef]
- Moayedi, H.; Jahed Armaghani, D. Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Eng. Comput. 2018, 34, 347–356. [Google Scholar] [CrossRef]
- Maнгушев, P.; Hикитинa, H. Bearing capacity of deep pile foundation for high-rise facility on weak soils: Comparing of analysis results and experimental data. Int. J. Comput. Civ. Struct. Eng. 2019, 15, 90–97. [Google Scholar] [CrossRef]
- Zhang, C.; Nguyen, G.D.; Einav, I. The end-bearing capacity of piles penetrating into crushable soils. Géotechnique 2013, 63, 341–354. [Google Scholar] [CrossRef]
Density | 1.457 g/cm3 |
Water content | 8.73% |
Cohesive force | 0 |
Angle of internal friction | 33° |
Compression modulus | 2 MPa |
Poisson’s ratio | 0.25 |
Modulus of elasticity | 1.7 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, P.; Wu, L.; Zhang, Q. Study on the Influence of Water Erosion on the Bearing Capacity and Function of the High Pile Foundation of the Wharf. Water 2024, 16, 606. https://doi.org/10.3390/w16040606
Yang Y, Zhang P, Wu L, Zhang Q. Study on the Influence of Water Erosion on the Bearing Capacity and Function of the High Pile Foundation of the Wharf. Water. 2024; 16(4):606. https://doi.org/10.3390/w16040606
Chicago/Turabian StyleYang, Yashi, Peng Zhang, Lingjun Wu, and Qian Zhang. 2024. "Study on the Influence of Water Erosion on the Bearing Capacity and Function of the High Pile Foundation of the Wharf" Water 16, no. 4: 606. https://doi.org/10.3390/w16040606
APA StyleYang, Y., Zhang, P., Wu, L., & Zhang, Q. (2024). Study on the Influence of Water Erosion on the Bearing Capacity and Function of the High Pile Foundation of the Wharf. Water, 16(4), 606. https://doi.org/10.3390/w16040606