Surrogate-Assisted Evolutionary Algorithm for the Calibration of Distributed Hydrological Models Based on Two-Dimensional Shallow Water Equations
Abstract
:1. Introduction
2. Study Area and Data
3. Distributed Hydrological Model
3.1. Iber
3.2. Model Parameterization
3.3. Objective Functions
3.4. Uncertainty Assessment
4. Conceptual Framework
4.1. Artificial Neural Networks
4.2. Evolutionary Algorithms
Algorithm 1 Evolutionary algorithm | |
▹ Generation of the Initial Population | |
▹ Fitness of each Candidate | |
while left do | |
▹ Selection of top q best candidates | |
▹ Assign probability | |
for i = 1 to do | |
▹ Replication | |
, | ▹ Initialize counters |
while or do | |
▹ Use Equation (10) | |
if then | ▹ Evaluate fit of the mutated members |
else | |
end if | |
end while | |
▹ Update | |
▹ Update | |
end for | |
end while |
5. Methodology
Algorithm 2 Surrogate-assisted evolutionary algorithm | |
▹ Generation of the Initial Population | |
▹ Fitness of each Candidate | |
▹ Initialization of the generation counter | |
while do | |
▹ Train a surrogate model | |
▹ Selection of top q best candidates | |
▹ Assign probability | |
for i = 1 to do | |
▹ Replication | |
, | ▹ Initialize counters |
while or do | |
▹ Use Equation (10) | |
if then | ▹ Estimate fit of the mutated member using |
else | |
end if | |
end while | |
▹ Update | |
▹ Update by evaluating using Iber | |
end for | |
end while |
Experimental Settings
6. Results and Discussion
6.1. Artificial-Neural-Network-Based Surrogate Model
6.2. Parameter Identification with the SA-EA Method
6.3. CPU Time
6.4. Calibrated Model
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, T.; Hsu, K.; Duan, Q.; Sorooshian, S.; Wang, C. Method to estimate optimal parameters. In Handbook of Hydrometeorological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Farfán, J.F.; Cea, L. Improving the predictive skills of hydrological models using a combinatorial optimization algorithm and artificial neural networks. Model. Earth Syst. Environ. 2022, 9, 1103–1118. [Google Scholar] [CrossRef]
- Wang, G.G.; Shan, S. Review of Metamodeling Techniques in Support of Engineering Design Optimization. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, PA, USA, 10–13 September 2006; Volume 4255, pp. 415–426. [Google Scholar]
- Mediero Orduña, L.J. Pronóstico Probabilístico de Caudales de Avenida Mediante Redes Bayesianas Aplicadas Sobre un Modelo Hidrológico Distribuido. Ph.D. Thesis, Caminos, Universidad Politécnica de Madrid, Madrid, Spain, 2007. [Google Scholar]
- Kampf, S.K.; Burges, S.J. A framework for classifying and comparing distributed hillslope and catchment hydrologic models. Water Resour. Res. 2007, 43, W0542. [Google Scholar] [CrossRef]
- Yoosefdoost, I.; Bozorg-Haddad, O.; Singh, V.P.; Chau, K.W. Hydrological Models. In Climate Change in Sustainable Water Resources Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 283–329. [Google Scholar]
- Kavvas, M.; Chen, Z.; Dogrul, C.; Yoon, J.; Ohara, N.; Liang, L.; Aksoy, H.; Anderson, M.; Yoshitani, J.; Fukami, K.; et al. Watershed environmental hydrology (WEHY) model based on upscaled conservation equations: Hydrologic module. J. Hydrol. Eng. 2004, 9, 450–464. [Google Scholar] [CrossRef]
- Zanchetta, A.D.; Coulibaly, P. Hybrid Surrogate Model for Timely Prediction of Flash Flood Inundation Maps Caused by Rapid River Overflow. Forecasting 2022, 4, 126–148. [Google Scholar] [CrossRef]
- Gu, H.; Xu, Y.P.; Ma, D.; Xie, J.; Liu, L.; Bai, Z. A surrogate model for the Variable Infiltration Capacity model using deep learning artificial neural network. J. Hydrol. 2020, 588, 125019. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Hydrologic prediction over the conterminous United States using the national multi-model ensemble. J. Hydrometeorol. 2014, 15, 1457–1472. [Google Scholar] [CrossRef]
- Schumann, G.P.; Neal, J.C.; Voisin, N.; Andreadis, K.M.; Pappenberger, F.; Phanthuwongpakdee, N.; Hall, A.C.; Bates, P.D. A first large-scale flood inundation forecasting model. Water Resour. Res. 2013, 49, 6248–6257. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Zeng, Z.; Lian, Y.; Bai, X. Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agric. For. Meteorol. 2018, 249, 149–162. [Google Scholar] [CrossRef]
- Sridhar, V.; Ali, S.A.; Lakshmi, V. Assessment and validation of total water storage in the Chesapeake Bay watershed using GRACE. J. Hydrol. Reg. Stud. 2019, 24, 100607. [Google Scholar] [CrossRef]
- Wang, K.; Shi, H.; Chen, J.; Li, T. An improved operation-based reservoir scheme integrated with Variable Infiltration Capacity model for multiyear and multipurpose reservoirs. J. Hydrol. 2019, 571, 365–375. [Google Scholar] [CrossRef]
- Farfán, J.F.; Cea, L. Coupling artificial neural networks with the artificial bee colony algorithm for global calibration of hydrological models. Neural Comput. Appl. 2021, 33, 8479–8494. [Google Scholar] [CrossRef]
- Kavetski, D. Parameter estimation and predictive uncertainty quantification in hydrological modelling. In Handbook of Hydrometeorological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Li, Z.; Liu, P.; Deng, C.; Guo, S.; He, P.; Wang, C. Evaluation of estimation of distribution algorithm to calibrate computationally intensive hydrologic model. J. Hydrol. Eng. 2016, 21, 04016012. [Google Scholar] [CrossRef]
- Bermúdez, M.; Cea, L.; Puertas, J. A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. J. Flood Risk Manag. 2019, 12, e12522. [Google Scholar] [CrossRef]
- Madsen, H. Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J. Hydrol. 2000, 235, 276–288. [Google Scholar] [CrossRef]
- Pétrowski, A.; Ben-Hamida, S. Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sloss, A.N.; Gustafson, S. 2019 evolutionary algorithms review. In Genetic Programming Theory and Practice XVII; Springer: Singapore, 2020; pp. 307–344. [Google Scholar]
- Zhao, J.; Lv, L.; Sun, H. Artificial bee colony using opposition-based learning. In Genetic and Evolutionary Computing; Springer: Cham, Switzerland, 2015; pp. 3–10. [Google Scholar]
- Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, W0740. [Google Scholar] [CrossRef]
- Mugunthan, P.; Shoemaker, C.A. Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resour. Res. 2006, 42, W10428. [Google Scholar] [CrossRef]
- Khu, S. A fast evolutionary-based meta-modelling approach for the calibration of a rainfall–runoff model. In Proceedings of the 1st Biennial Meeting of the International Environmental Modelling and Software Society, iEMSs, Lugano, Switzerland, 24–27 June 2002; Volume 1, pp. 147–152. [Google Scholar]
- Shoemaker, C.A.; Regis, R.G.; Fleming, R.C. Watershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximation. Hydrol. Sci. J. 2007, 52, 450–465. [Google Scholar] [CrossRef]
- Sopelana, J.; Cea, L.; Ruano, S. A continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso-and macrotides. Nat. Hazards 2018, 93, 1337–1358. [Google Scholar] [CrossRef]
- Zhang, X.; Srinivasan, R.; Van Liew, M. Approximating SWAT model using artificial neural network and support vector machine 1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 460–474. [Google Scholar] [CrossRef]
- Chu, H.; Wu, W.; Wang, Q.; Nathan, R.; Wei, J. An ANN-based emulation modelling framework for flood inundation modelling: Application, challenges and future directions. Environ. Model. Softw. 2020, 124, 104587. [Google Scholar] [CrossRef]
- Shaw, A.R.; Smith Sawyer, H.; LeBoeuf, E.J.; McDonald, M.P.; Hadjerioua, B. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model. Water Resour. Res. 2017, 53, 9444–9461. [Google Scholar] [CrossRef]
- Shrestha, D.; Kayastha, N.; Solomatine, D. A novel approach to parameter uncertainty analysis of hydrological models using neural networks. Hydrol. Earth Syst. Sci. 2009, 13, 1235–1248. [Google Scholar] [CrossRef]
- Liong, S.Y.; Khu, S.T.; Chan, W.T. Derivation of Pareto front with genetic algorithm and neural network. J. Hydrol. Eng. 2001, 6, 52–61. [Google Scholar] [CrossRef]
- Yan, X.; Mohammadian, A.; Ao, R.; Liu, J.; Yang, N. Two-dimensional convolutional neural network outperforms other machine learning architectures for water depth surrogate modeling. J. Hydrol. 2023, 616, 128812. [Google Scholar] [CrossRef]
- Wu, M.; Wang, L.; Xu, J.; Wang, Z.; Hu, P.; Tang, H. Multiobjective ensemble surrogate-based optimization algorithm for groundwater optimization designs. J. Hydrol. 2022, 612, 128159. [Google Scholar] [CrossRef]
- Gorissen, D.; Couckuyt, I.; Demeester, P.; Dhaene, T.; Crombecq, K. A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res. 2010, 11, 2051–2055. [Google Scholar]
- Liang, J.; Melching, C.S. Experimental evaluation of the effect of storm movement on peak discharge. Int. J. Sediment Res. 2015, 30, 167–177. [Google Scholar] [CrossRef]
- Cabalar Fuentes, M. Los temporales de lluvia y viento en Galicia. Propuesta de clasificación y análisis de tendencias (1961–2001). Investig. Geogr. 2005, nº 36, 103–118. [Google Scholar] [CrossRef]
- Cea, L.; Bladé, E. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res. 2015, 51, 5464–5486. [Google Scholar] [CrossRef]
- García-Feal, O.; González-Cao, J.; Gómez-Gesteira, M.; Cea, L.; Domínguez, J.M.; Formella, A. An accelerated tool for flood modelling based on Iber. Water 2018, 10, 1459. [Google Scholar] [CrossRef]
- Cea, L.; Álvarez, M.; Puertas, J. Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique). J. Hydrol. Reg. Stud. 2022, 44, 101247. [Google Scholar] [CrossRef]
- García-Alén, G.; Hostache, R.; Cea, L.; Puertas, J. Joint assimilation of satellite soil moisture and streamflow data for the hydrological application of a two-dimensional shallow water model. J. Hydrol. 2023, 621, 129667. [Google Scholar] [CrossRef]
- Sanz-Ramos, M.; Bladé, E.; González-Escalona, F.; Olivares, G.; Aragón-Hernández, J.L. Interpreting the manning roughness coefficient in overland flow simulations with coupled hydrological-hydraulic distributed models. Water 2021, 13, 3433. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G. Studies on Soil Phyics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef]
- USDA, N.R.C.S. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; Number 436 in 1; US Department of Agriculture: Washington, DC, USA, 1975.
- Maidment, D. Handbook of Hydrology; McGraw-Hill Education: New York, NY, USA, 1993. [Google Scholar]
- Te Chow, V.; Maidment, D.R.; Mays, L.W. Applied hydrology. J. Eng. Educ. 1962, 308, 1959. [Google Scholar]
- Samuels, P.; Bramley, M.; Evans, E. Reducing uncertainty in conveyance estimation. In Proceedings of the International Conference on Fluvial Hydraulics (River Flow 2002), Louvain-la-Neuve, Belgium, 4–6 September 2002. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 1984, 34, 975–986. [Google Scholar] [CrossRef]
- Granville, V.; Krivánek, M.; Rasson, J.P. Simulated annealing: A proof of convergence. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 652–656. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Wang, Q. The genetic algorithm and its application to calibrating conceptual rainfall–runoff models. Water Resour. Res. 1991, 27, 2467–2471. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall–runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Audze, P. New approach to planning out of experiments. Probl. Dyn. Strengths 1977, 35, 104–107. [Google Scholar]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.; Wang, B.; Jiang, X.; Liu, C.; Zheng, C. A surrogate-assisted evolutionary algorithm based on multi-population clustering and prediction for solving computationally expensive dynamic optimization problems. Expert Syst. Appl. 2023, 223, 119815. [Google Scholar] [CrossRef]
- Espinosa, R.; Jiménez, F.; Palma, J. Multi-surrogate assisted multi-objective evolutionary algorithms for feature selection in regression and classification problems with time series data. Inf. Sci. 2023, 622, 1064–1091. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Y.; Sun, C.; Doherty, J. Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE Trans. Evol. Comput. 2018, 23, 203–216. [Google Scholar] [CrossRef]
- Kim, S.H.; Boukouvala, F. Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques. Optim. Lett. 2020, 14, 989–1010. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Ritter, A.; Munoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Fraga, I.; Cea, L.; Puertas, J. Experimental study of the water depth and rainfall intensity effects on the bed roughness coefficient used in distributed urban drainage models. J. Hydrol. 2013, 505, 266–275. [Google Scholar] [CrossRef]
- Farfán-Durán, J.F.; Cea, L. Visualizing the Results of the Calibration of the Distributed Hydrological Model Iber+ with the Surrogate-Assisted Evolutionary Algorithm; HydroShare, 2023; Available online: https://www.hydroshare.org/resource/1a7d73ae3ac044969740f985b56d031c/ (accessed on 28 January 2024).
Event | Start | Event Duration (h) | Max 1 h Intensity (mm/h) | Q Max (m3/s) |
---|---|---|---|---|
E0 | - | 42 | 11.3 | 201.1 |
E1 | 5 January 2011 12:00 | 38 | 6.1 | 162.5 |
E2 | 13 January 2016 00:00 | 38 | 10.7 | 171.3 |
E3 | 15 February 2018 15:00 | 50 | 4.1 | 82.5 |
Land Use | % |
---|---|
Natural land areas | 58.82 |
Agriculture | 36.52 |
Forestry | 1.92 |
Residential use | 0.76 |
Transitional areas | 0.59 |
Transport networks | 0.45 |
Abandoned areas | 0.16 |
Secondary production | 0.15 |
Utilities | 0.15 |
Use not known | 0.15 |
Community services | 0.14 |
Mining and quarrying | 0.10 |
Water areas not in other economic use | 0.08 |
Zone | Description | Symbol | Units | Min Value | Max Value |
---|---|---|---|---|---|
Zone 1 | Soil suction in zone 1. | mm | 88 | 273 | |
Soil porosity in zone 1. | - | 0.3 | 0.5 | ||
Initial soil saturation in zone 1. | - | 0.05 | 0.85 | ||
Saturated hydraulic conductivity of the soil in zone 1. | mm/h | 1 | 4 | ||
Initial losses in zone 1. | mm | 0.1 | 10 | ||
Depth of soil in zone 1. | m | 0.25 | 10 | ||
Manning roughness coefficient for the zone 1. | - | 0.012 | 0.18 | ||
Zone 2 | Soil suction in zone 2. | mm | 88 | 273 | |
Soil porosity in zone 2. | - | 0.3 | 0.5 | ||
Initial soil saturation in zone 2. | - | 0.05 | 0.85 | ||
Saturated hydraulic conductivity of the soil in zone 2. | mm/h | 1 | 4 | ||
Initial losses in zone 2. | mm | 0.1 | 10 | ||
Depth of soil in zone 2. | m | 0.25 | 10 | ||
Manning roughness coefficient for the zone 2. | - | 0.012 | 0.18 | ||
River | Manning roughness coefficient for the river | - | 0.012 | 0.18 |
Parameters for SA-EA | Symbol | Value |
---|---|---|
Generations counter (initial value) | G | 1 |
Number of generations of SA-EA | 4 | |
Number of folds for ANN training | k | 5 |
Members of the initial population | N | 25 |
Replicated members per generation | 25 | |
Model parameters | 15 | |
Objective functions | 2 | |
Best population members | q | 5 |
Improvement counter (initial value) | c | 0 |
Improvement counter limit | 25 | |
Deterioration counter (initial value) | d | 0 |
Deterioration counter limit | 10 | |
Evolution parameter | 0.25 |
Event | Training Iteration | Population Size | NSE | WNSE | ||
---|---|---|---|---|---|---|
Training | Testing | Training | Testing | |||
MSE | MSE | MSE | MSE | |||
E0 | G1 | 25 | 0.007 | 0.006 | 0.018 | 0.016 |
G2 | 50 | 0.005 | 0.005 | 0.015 | 0.013 | |
G3 | 75 | 0.004 | 0.003 | 0.012 | 0.010 | |
G4 | 100 | 0.002 | 0.002 | 0.008 | 0.006 | |
E1 | G1 | 25 | 0.020 | 0.019 | 0.066 | 0.066 |
G2 | 50 | 0.003 | 0.003 | 0.012 | 0.010 | |
G3 | 75 | 0.003 | 0.003 | 0.010 | 0.009 | |
G4 | 100 | 0.004 | 0.004 | 0.014 | 0.012 | |
E2 | G1 | 25 | 0.017 | 0.016 | 0.046 | 0.041 |
G2 | 50 | 0.007 | 0.006 | 0.022 | 0.017 | |
G3 | 75 | 0.006 | 0.005 | 0.018 | 0.014 | |
G4 | 100 | 0.004 | 0.002 | 0.014 | 0.008 | |
E3 | G1 | 25 | 0.128 | 0.116 | 0.276 | 0.251 |
G2 | 50 | 0.068 | 0.053 | 0.128 | 0.101 | |
G3 | 75 | 0.055 | 0.047 | 0.090 | 0.074 | |
G4 | 100 | 0.042 | 0.030 | 0.079 | 0.053 |
E0 | E1 | E2 | E3 | |
---|---|---|---|---|
Initial population | 4/25 | 0/25 | 1/25 | 0/25 |
G1 | 25/25 | 1/25 | 12/25 | 3/25 |
G2 | 23/25 | 10/25 | 25/25 | 7/25 |
G3 | 25/25 | 25/25 | 25/25 | 20/25 |
G4 | 25/25 | 24/25 | 25/25 | 25/25 |
Generation | E0 | E1 | E2 | E3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Evaluations with ANN | Time (s) | Evaluation with Iber (h) | Evaluations with ANN | Time (s) | Evaluation with Iber (h) | Evaluations with ANN | Time (s) | Evaluation with Iber (h) | Evaluations with ANN | Time (s) | Evaluation with Ibet (h) | |
G1 | 408 | 52 | 1.53 | 394 | 40 | 1.42 | 420 | 41 | 1.70 | 409 | 46 | 1.23 |
G2 | 425 | 50 | 1.53 | 400 | 50 | 1.43 | 412 | 41 | 1.65 | 424 | 54 | 1.22 |
G3 | 425 | 52 | 1.52 | 385 | 40 | 1.42 | 401 | 44 | 1.62 | 416 | 56 | 1.23 |
G4 | 403 | 50 | 1.50 | 347 | 47 | 1.41 | 416 | 38 | 1.62 | 412 | 49 | 1.28 |
Event | NSE | WNSE | fit |
---|---|---|---|
E0 | 0.99 | 0.99 | 0.99 |
E1 | 0.92 | 0.93 | 0.93 |
E2 | 0.94 | 0.93 | 0.93 |
E3 | 0.93 | 0.92 | 0.93 |
Event | Measure | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E0 | mean | 212.8 | 0.34 | 0.49 | 3.2 | 7.5 | 5.6 | 196.1 | 0.36 | 0.76 | 1.7 | 8.6 | 7.4 | 0.09 | 0.09 | 0.05 |
std | 33.6 | 0.05 | 0.07 | 0.4 | 2.8 | 1.3 | 31.6 | 0.03 | 0.22 | 0.3 | 2.0 | 0.9 | 0.04 | 0.02 | 0.03 | |
E1 | mean | 136.5 | 0.47 | 0.12 | 1.2 | 2.0 | 4.5 | 222.5 | 0.46 | 0.55 | 1.3 | 6.1 | 6.0 | 0.04 | 0.07 | 0.07 |
std | 9.1 | 0.01 | 0.02 | 0.0 | 1.0 | 0.9 | 19.9 | 0.01 | 0.08 | 0.0 | 0.3 | 0.6 | 0.00 | 0.00 | 0.01 | |
E2 | mean | 189.2 | 0.40 | 0.67 | 1.8 | 8.5 | 5.2 | 157.9 | 0.37 | 0.63 | 1.8 | 5.4 | 5.0 | 0.13 | 0.07 | 0.09 |
std | 18.3 | 0.05 | 0.14 | 0.2 | 1.1 | 1.2 | 27.1 | 0.02 | 0.10 | 0.4 | 1.6 | 1.6 | 0.01 | 0.03 | 0.01 | |
E3 | mean | 119.7 | 0.32 | 0.61 | 2.8 | 6.3 | 9.6 | 148.2 | 0.36 | 0.76 | 1.6 | 8.3 | 0.4 | 0.18 | 0.02 | 0.16 |
std | 8.5 | 0.00 | 0.02 | 0.2 | 0.5 | 0.0 | 7.7 | 0.00 | 0.01 | 0.1 | 1.3 | 0.0 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farfán-Durán, J.F.; Heidari, A.; Dhaene, T.; Couckuyt, I.; Cea, L. Surrogate-Assisted Evolutionary Algorithm for the Calibration of Distributed Hydrological Models Based on Two-Dimensional Shallow Water Equations. Water 2024, 16, 652. https://doi.org/10.3390/w16050652
Farfán-Durán JF, Heidari A, Dhaene T, Couckuyt I, Cea L. Surrogate-Assisted Evolutionary Algorithm for the Calibration of Distributed Hydrological Models Based on Two-Dimensional Shallow Water Equations. Water. 2024; 16(5):652. https://doi.org/10.3390/w16050652
Chicago/Turabian StyleFarfán-Durán, Juan F., Arash Heidari, Tom Dhaene, Ivo Couckuyt, and Luis Cea. 2024. "Surrogate-Assisted Evolutionary Algorithm for the Calibration of Distributed Hydrological Models Based on Two-Dimensional Shallow Water Equations" Water 16, no. 5: 652. https://doi.org/10.3390/w16050652
APA StyleFarfán-Durán, J. F., Heidari, A., Dhaene, T., Couckuyt, I., & Cea, L. (2024). Surrogate-Assisted Evolutionary Algorithm for the Calibration of Distributed Hydrological Models Based on Two-Dimensional Shallow Water Equations. Water, 16(5), 652. https://doi.org/10.3390/w16050652