Groundwater Temperature Stripes: A Simple Method to Communicate Groundwater Temperature Variations Due to Climate Change
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. GWT Data
2.2. GWT Stripes Elaboration
3. Results
- A map of Piedmont with the GWT stripes for each monitoring well, allowing an immediate evaluation of the GWT trend in the specific piezometer (Figure 5);
- A map of Piedmont with column graphs, using the same scale, for all 15 monitoring wells, allowing a graphical comparison of GWT data between all the analysed piezometers (Figure 6).
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AN | anomaly |
AT | air temperatre |
CC | climate change |
GW | groundwater |
GWT | groundwater temperature |
MTA | monthly temperature anomaly |
References
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. IPCC 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; Volume 3056. [Google Scholar] [CrossRef]
- Dragoni, W.; Sukhija, B.S. Climate Change and Groundwater: A Short Review. Geol. Soc. Lond. Spec. Publ. 2008, 288, 1–12. [Google Scholar] [CrossRef]
- Egidio, E.; Lasagna, M.; Mancini, S.; Luca, D.A.D. Climate Impact Assessment to the Groundwater Levels Based on Long Time-Series Analysis in a Paddy Field Area (Piedmont Region, NW Italy): Preliminary Results. Acque Sotter. Ital. J. Groundw. Acque Sotter. 2022, 3, 21–29. [Google Scholar] [CrossRef]
- Holman, I.P. Climate Change Impacts on Groundwater Recharge-Uncertainty, Shortcomings, and the Way Forward? Hydrogeol. J. 2006, 14, 637–647. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid Groundwater Decline and Some Cases of Recovery in Aquifers Globally. Nature 2024, 625, 715–721. [Google Scholar] [CrossRef]
- Kjellström, E.; Nikulin, G.; Strandberg, G.; Christensen, O.B.; Jacob, D.; Keuler, K.; Lenderink, G.; van Meijgaard, E.; Schär, C.; Somot, S.; et al. European Climate Change at Global Mean Temperature Increases of 1.5 and 2 °C above Pre-Industrial Conditions as Simulated by the EURO-CORDEX Regional Climate Models. Earth Syst. Dynam. 2018, 9, 459–478. [Google Scholar] [CrossRef]
- Lasagna, M.; Mancini, S.; De Luca, D.A. Groundwater Hydrodynamic Behaviours Based on Water Table Levels to Identify Natural and Anthropic Controlling Factors in the Piedmont Plain (Italy). Sci. Total Environ. 2020, 716, 137051. [Google Scholar] [CrossRef]
- Taniguchi, M. Evaluation of Vertical Groundwater Fluxes and Thermal Properties of Aquifers Based on Transient Temperature-Depth Profiles. Water Resour. Res. 1993, 29, 2021–2026. [Google Scholar] [CrossRef]
- Taylor, C.A.; Stefan, H.G. Shallow Groundwater Temperature Response to Climate Change and Urbanization. J. Hydrol. 2009, 375, 601–612. [Google Scholar] [CrossRef]
- Doll, P.; Fiedler, K. Global-Scale Modeling of Groundwater Recharge. Hydrol. Earth Syst. Sci. 2008, 12, 863–885. [Google Scholar] [CrossRef]
- Khan, S.; Gabriel, H.F.; Rana, T. Standard Precipitation Index to Track Drought and Assess Impact of Rainfall on Watertables in Irrigation Areas. Irrig. Drain. Syst. 2008, 22, 159–177. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Bastiancich, L.; Lasagna, M.; Mancini, S.; Falco, M.; De Luca, D.A. Temperature and Discharge Variations in Natural Mineral Water Springs Due to Climate Variability: A Case Study in the Piedmont Alps (NW Italy). Env. Geochem. Health 2021, 44, 1971–1994. [Google Scholar] [CrossRef] [PubMed]
- Benz, S.; Bayer, P.; Blum, P. Global Patterns of Shallow Groundwater Temperatures. Environ. Res. Lett. 2017, 12, 034005. [Google Scholar] [CrossRef]
- Burns, E.R.; Zhu, Y.; Zhan, H.; Manga, M.; Williams, C.F.; Ingebritsen, S.E.; Dunham, J.B. Thermal Effect of Climate Change on Groundwater-Fed Ecosystems. Water Resour. Res. 2017, 53, 3341–3351. [Google Scholar] [CrossRef]
- Epting, J.; Michel, A.; Affolter, A.; Huggenberger, P. Climate Change Effects on Groundwater Recharge and Temperatures in Swiss Alluvial Aquifers. J. Hydrol. X 2021, 11, 100071. [Google Scholar] [CrossRef]
- Gunawardhana, L.N.; Kazama, S. Climate Change Impacts on Groundwater Temperature Change in the Sendai Plain, Japan. Hydrol. Process. 2011, 25, 2665–2678. [Google Scholar] [CrossRef]
- Hemmerle, H.; Bayer, P. Climate Change Yields Groundwater Warming in Bavaria, Germany. Front. Earth Sci. 2020, 8, 575894. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Caissie, D.; McKenzie, J.M. Shallow Groundwater Thermal Sensitivity to Climate Change and Land Cover Disturbances: Derivation of Analytical Expressions and Implications for Stream Temperature Modeling. Hydrol. Earth Syst. Sci. 2015, 19, 2469–2489. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Voss, C.I. Climate Change Impacts on the Temperature and Magnitude of Groundwater Discharge from Shallow, Unconfined Aquifers. Water Resour. Res. 2014, 50, 3253–3274. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Kurylyk, B.L.; Bayer, P. Observed Groundwater Temperature Response to Recent Climate Change. Hydrol. Earth Syst. Sci. 2014, 18, 4453–4466. [Google Scholar] [CrossRef]
- Noethen, M.; Hemmerle, H.; Bayer, P. Sources, Intensities, and Implications of Subsurface Warming in Times of Climate Change. Crit. Rev. Environ. Sci. Technol. 2022, 53, 700–722. [Google Scholar] [CrossRef]
- Egidio, E.; Mancini, S.; De Luca, D.A.; Lasagna, M. The Impact of Climate Change on Groundwater Temperature of the Piedmont Po Plain (NW Italy). Water 2022, 14, 2797. [Google Scholar] [CrossRef]
- Blanco-Coronas, A.M.; Calvache, M.L.; López-Chicano, M.; Martín-Montañés, C.; Jiménez-Sánchez, J.; Duque, C. Salinity and Temperature Variations near the Freshwater-Saltwater Interface in Coastal Aquifers Induced by Ocean Tides and Changes in Recharge. Water 2022, 14, 2807. [Google Scholar] [CrossRef]
- Cogswell, C.; Heiss, J.W. Climate and Seasonal Temperature Controls on Biogeochemical Transformations in Unconfined Coastal Aquifers. JGR Biogeosciences 2021, 126, e2021JG006605. [Google Scholar] [CrossRef]
- Irvine, D.J.; Kurylyk, B.L.; Cartwright, I.; Bonham, M.; Post, V.E.A.; Banks, E.W.; Simmons, C.T. Groundwater Flow Estimation Using Temperature-Depth Profiles in a Complex Environment and a Changing Climate. Sci. Total Environ. 2017, 574, 272–281. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N. Groundwater Temperature Trend as a Proxy for Climate Variability. Proceedings 2018, 2, 630. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N. Deciphering Interannual Temperature Variations in Springs of the Campania Region (Italy). Water 2019, 11, 288. [Google Scholar] [CrossRef]
- Cavelan, A.; Golfier, F.; Colombano, S.; Davarzani, H.; Deparis, J.; Faure, P. A Critical Review of the Influence of Groundwater Level Fluctuations and Temperature on LNAPL Contaminations in the Context of Climate Change. Sci. Total Environ. 2022, 806, 150412. [Google Scholar] [CrossRef]
- Lee, B.; Hamm, S.-Y.; Jang, S.; Cheong, J.-Y.; Kim, G.-B. Relationship between Groundwater and Climate Change in South Korea. Geosci. J. 2014, 18, 209–218. [Google Scholar] [CrossRef]
- Colombani, N.; Giambastiani, B.M.S.; Mastrocicco, M. Use of Shallow Groundwater Temperature Profiles to Infer Climate and Land Use Change: Interpretation and Measurement Challenges. Hydrol. Process. 2016, 30, 2512–2524. [Google Scholar] [CrossRef]
- Danielopol, D.L.; Griebler, C.; Gunatilaka, A.; Notenboom, J. Present State and Future Prospects for Groundwater Ecosystems. Envir. Conserv. 2003, 30, 104–130. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate Change Impacts on Groundwater and Dependent Ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Lomeli-Banda, M.A.; Ramírez-Hernández, J.; Rodríguez-Burgueño, J.E.; Salazar-Briones, C. The Role of Hydrological Processes in Ecosystem Conservation: Comprehensive Water Management for a Wetland in an Arid Climate. Hydrol. Process. 2021, 35, e14013. [Google Scholar] [CrossRef]
- Colloff, M.J.; Baldwin, D.S. Resilience of Floodplain Ecosystems in a Semi-Arid Environment. Rangel. J. 2010, 32, 305. [Google Scholar] [CrossRef]
- Brielmann, H.; Griebler, C.; Schmidt, S.I.; Michel, R.; Lueders, T. Effects of Thermal Energy Discharge on Shallow Groundwater Ecosystems: Ecosystem Impacts of Groundwater Heat Discharge. FEMS Microbiol. Ecol. 2009, 68, 273–286. [Google Scholar] [CrossRef]
- Rivers-Moore, N.A.; Dallas, H.F. A Spatial Freshwater Thermal Resilience Landscape for Informing Conservation Planning and Climate Change Adaptation Strategies. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 32, 832–842. [Google Scholar] [CrossRef]
- Johnson, Z.C.; Snyder, C.D.; Hitt, N.P. Landform Features and Seasonal Precipitation Predict Shallow Groundwater Influence on Temperature in Headwater Streams. Water Resour. Res. 2017, 53, 5788–5812. [Google Scholar] [CrossRef]
- Morsy, K.M.; Alenezi, A.; AlRukaibi, D.S. Groundwater and Dependent Ecosystems: Revealing the Impacts of Climate Change. Int. J. Appl. Eng. Res. 2017, 12, 3919–3926. [Google Scholar]
- Carlson, A.K.; Taylor, W.W.; Infante, D.M. Developing Precipitation- and Groundwater-Corrected Stream Temperature Models to Improve Brook Charr Management amid Climate Change. Hydrobiologia 2019, 840, 379–398. [Google Scholar] [CrossRef]
- Fan, M.; Shibata, H.; Chen, L. Spatial Priority Conservation Areas for Water Yield Ecosystem Service under Climate Changes in Teshio Watershed, Northernmost Japan. J. Water Clim. Change 2020, 11, 106–129. [Google Scholar] [CrossRef]
- Epting, J.; Huggenberger, P. Unraveling the Heat Island Effect Observed in Urban Groundwater Bodies—Definition of a Potential Natural State. J. Hydrol. 2013, 501, 193–204. [Google Scholar] [CrossRef]
- Fennell, J.; Geris, J.; Wilkinson, M.E.; Daalmans, R.; Soulsby, C. Lessons from the 2018 Drought for Management of Local Water Supplies in Upland Areas: A Tracer-Based Assessment. Hydrol. Process. 2020, 34, 4190–4210. [Google Scholar] [CrossRef]
- Berta, A.; Gizzi, M.; Taddia, G.; Lo Russo, S. The Role of Standards and Regulations in the Open-Loop GWHPs Development in Italy: The Case Study of the Lombardy and Piedmont Regions. Renew. Energy 2024, 223, 120016. [Google Scholar] [CrossRef]
- Petitta, M.; Kreamer, D.; Davey, I.; Dottridge, J.; MacDonald, A.; Re, V.; Szőcs, T. Topical Collection: International Year of Groundwater—Managing Future Societal and Environmental Challenges. Hydrogeol. J. 2023, 31, 1–6. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Groundwater Making the Invisible Visible; UN Water, Ed.; The United Nations World Water Development Report; UNESCO: Paris, France, 2022; ISBN 978-92-3-100507-7. [Google Scholar]
- Warming Stripes|Climate Lab Book. Available online: https://www.climate-lab-book.ac.uk/warming-stripes/ (accessed on 26 July 2023).
- Show Your Stripes. Available online: https://showyourstripes.info/ (accessed on 22 July 2023).
- Climate Spirals|Climate Lab Book. Available online: https://www.climate-lab-book.ac.uk/spirals/ (accessed on 2 October 2023).
- Environmental Science, Data, and Analysis of the Highest Quality Independent, Non-Governmental, and Open-Source. Available online: https://berkeleyearth.wpengine.com/ (accessed on 3 October 2023).
- Hawkins, E. Show Your Stripes. Available online: https://showyourstripes.info/faq (accessed on 3 October 2023).
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.H.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 Data Set. JGR Atmos. 2021, 126, e2019JD032361. [Google Scholar] [CrossRef]
- Richardson, M. #BiodiversityStripes. Available online: https://biodiversitystripes.info/ukfarmlandbirds/landscape (accessed on 26 July 2023).
- Living Planet Index. Available online: https://www.livingplanetindex.org/ (accessed on 3 October 2023).
- Gruber, N.; Gregor, L. #AcidificationStripes. Available online: https://oceanacidificationstripes.info/s/ph/basin/globalocean/entirebasin (accessed on 2 October 2023).
- Gregor, L.; Gruber, N. OceanSODA-ETHZ: A Global Gridded Data Set of the Surface Ocean Carbonate System for Seasonal to Decadal Studies of Ocean Acidification. Earth Syst. Sci. Data 2021, 13, 777–808. [Google Scholar] [CrossRef]
- Regione Piemonte GREASE. Available online: https://webgis.arpa.piemonte.it/monitoraggio_qualita_acque_mapseries/monitoraggio_qualita_acque_webapp/ (accessed on 14 September 2023).
- De Luca, D.A.; Lasagna, M.; Debernardi, L. Hydrogeology of the Western Po Plain (Piedmont, NW Italy). J. Maps 2020, 16, 265–273. [Google Scholar] [CrossRef]
- Cocca, D.; Lasagna, M.; Marchina, C.; Brombin, V.; Santillán Quiroga, L.M.; De Luca, D.A. Assessment of the Groundwater Recharge Processes of a Shallow and Deep Aquifer System (Maggiore Valley, Northwest Italy): A Hydrogeochemical and Isotopic Approach. Hydrogeol. J. 2023. [Google Scholar] [CrossRef]
- Forno, M.G.; De Luca, D.A.; Festa, V.; Bonasera, M.; Bucci, A.; Gianotti, F.; Lasagna, M.; Longhitano, S.G.; Lucchesi, S.; Petruzzelli, M.; et al. Synthesis on the Turin Subsoil Stratigraphy and Hydrogeology (NW Italy). AMQ 2018, 31, 1–24. [Google Scholar] [CrossRef]
- Bucci, A.; Barbero, D.; Lasagna, M.; Forno, M.G.; De Luca, D.A. Shallow Groundwater Temperature in the Turin Area (NW Italy): Vertical Distribution and Anthropogenic Effects. Environ. Earth. Sci. 2017, 76, 221. [Google Scholar] [CrossRef]
- Bucci, A.; Lasagna, M.; De Luca, D.A.; Acquaotta, F.; Barbero, D.; Fratianni, S. Time Series Analysis of Underground Temperature and Evaluation of Thermal Properties in a Test Site of the Po Plain (NW Italy). Environ. Earth. Sci. 2020, 79, 185. [Google Scholar] [CrossRef]
- Brussolo, E.; Palazzi, E.; von Hardenberg, J.; Masetti, G.; Vivaldo, G.; Previati, M.; Canone, D.; Gisolo, D.; Bevilacqua, I.; Provenzale, A.; et al. Aquifer Recharge in the Piedmont Alpine Zone: Historical Trends and Future Scenarios. Hydrol. Earth Syst. Sci. 2022, 26, 407–427. [Google Scholar] [CrossRef]
- Arpa Piemonte Stazione: Torino—Serie Ultracentenarie—Dati Dal 1787. Available online: https://www.arpa.piemonte.it/rischi_naturali/snippets_arpa_graphs/dati_giornalieri_centenaria/?statid=PIE-001272-100-1787-01-01¶m=T (accessed on 7 February 2024).
- Hawkins, E. Show Your Stripes Turin. Available online: https://showyourstripes.info/l/europe/italy/turin (accessed on 7 February 2024).
- Braca, G.; Bussettini, M.; Lastoria, B.; Mariani, S. Linee Guida per l’analisi e l’elaborazione Statistica di Base delle Serie Storiche di Dati Idrologici; Guidelines n. 84/2013; ISPRA: Rome, Italy, 2013; ISBN 978-88-448-0584-5.
- Mancini, S.; Egidio, E.; De Luca, D.A.; Lasagna, M. Application and Comparison of Different Statistical Methods for the Analysis of Groundwater Levels over Time: Response to Rainfall and Resource Evolution in the Piedmont Plain (NW Italy). Sci. Total Environ. 2022, 846, 157479. [Google Scholar] [CrossRef] [PubMed]
- Climate Stripes—University of Reading. Available online: https://www.reading.ac.uk/planet/climate-resources/climate-stripes (accessed on 26 July 2023).
Monitoring Well | Location | X Coordinate (WGS 84, UTM 32) | Y Coordinate (WGS 84, UTM 32) | Altitude (m a.s.l.) | Depth of the Monitoring Well (m) | Depth of the Instrument (m) | Distance Between the Topographic Surface and the Water Table (m) | Filtered Interval (m) |
---|---|---|---|---|---|---|---|---|
PII51 | Suno | 463753 | 5053032 | 251 | 15 | 10 | 4.87 | 6–15 |
PII31 | Caltignaga | 467448 | 5040801 | 179 | 15 | 15 | 3.73 | 6–15 |
PII32 | Cameri | 472183 | 5039246 | 164 | 15 | 15 | 4.92 | 6–15 |
PII19 | Landiona | 455465 | 5038163 | 180 | 15 | 15 | 1.67 | 3–15 |
P43 | Albiano d’Ivrea | 417580 | 5031184 | 229 | 24 | 11.4 | 4.08 | 12–24 |
PII11 | Vercelli | 453187 | 5018583 | 131 | 35 | 10 | 3.56 | 3–15 |
PII06 | Ronsecco | 442911 | 5011693 | 145 | 25 | 10 | 4.06 | 9–15 |
PII45 | Trino | 437139 | 5011305 | 156 | 15 | 15 | 3.2 | 3–15 |
P21 | Rivarolo Canavese | 400961 | 5016462 | 266 | 20 | 15 | 3.47 | 11–20 |
SI5 | Verolengo | 423853 | 5004449 | 177 | 18 | 15 | 9.84 | 5–20 |
P8 | Barge | 368435 | 4954232 | 335 | 39 | 20 | 10.18 | 18–39 |
P14/1 | Moretta | 383530 | 4957900 | 252 | 30 | 10 | 2.14 | 12–30 |
P23 | Fossano | 392537 | 4926862 | 412 | 30 | 20 | 10.16 | 15–30 |
T2 | Morozzo | 397367 | 4919953 | 430 | 30 | 10 | 3.76 | 5–11 |
DST | Masio | 453833 | 4968900 | 101 | 8 | 8 | 4.81 | 0–8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasagna, M.; Egidio, E.; De Luca, D.A. Groundwater Temperature Stripes: A Simple Method to Communicate Groundwater Temperature Variations Due to Climate Change. Water 2024, 16, 717. https://doi.org/10.3390/w16050717
Lasagna M, Egidio E, De Luca DA. Groundwater Temperature Stripes: A Simple Method to Communicate Groundwater Temperature Variations Due to Climate Change. Water. 2024; 16(5):717. https://doi.org/10.3390/w16050717
Chicago/Turabian StyleLasagna, Manuela, Elena Egidio, and Domenico Antonio De Luca. 2024. "Groundwater Temperature Stripes: A Simple Method to Communicate Groundwater Temperature Variations Due to Climate Change" Water 16, no. 5: 717. https://doi.org/10.3390/w16050717
APA StyleLasagna, M., Egidio, E., & De Luca, D. A. (2024). Groundwater Temperature Stripes: A Simple Method to Communicate Groundwater Temperature Variations Due to Climate Change. Water, 16(5), 717. https://doi.org/10.3390/w16050717