Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Sensor Measurements
2.3. Earth Observation Data
2.4. Methods
2.4.1. Experimental Design
- ‘Multi-seasonal by Individual Sensor’ (M-I-S). This setup incorporates data from multiple seasons, analysing observations from each of the four in situ sensors individually.
- ‘Multi-seasonal—All Sensors’ (M-A-S). This approach incorporates data from all in situ measurements across three seasons, spanning from March to October.
- ‘Seasonal—All Sensors’ (S-A-S). This experiment consolidates sensor recordings on a per-season basis, separately analysing the spring period (25 March–30 May) and the summer period (2 June–31 August).
2.4.2. Water Quality Parameter Modelling
2.4.3. Accuracy Assessment
3. Results
3.1. ‘Multi-Seasonal by Individual Sensor’ (M-I-S) Experiment
3.2. ‘Multi-Seasonal—All Sensors’ (M-A-S) Experiment
3.3. ‘Seasonal—All Sensors’ (S-A-S) Experiment
3.4. Spatial Distribution of DO and EC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, J.C.; Schiebe, F.R. Water Quality. In Remote Sensing in Hydrology and Water Management; Schultz, G.A., Engman, E.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 287–303. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring Inland Water Quality Using Remote Sensing: Potential and Limitations of Spectral Indices, Bio-Optical Simulations, Machine Learning, and Cloud Computing. Earth Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- IOCCG. Earth Observations in Support of Global Water Quality; International Ocean-Colour Coordinating Group: Dartmouth, NS, Canada, 2018. [Google Scholar] [CrossRef]
- Grizzetti, B.; Liquete, C.; Pistocchi, A.; Vigiak, O.; Zulian, G.; Bouraoui, F.; De Roo, A.; Cardoso, A.C. Relationship between Ecological Condition and Ecosystem Services in European Rivers, Lakes and Coastal Waters. Sci. Total Environ. 2019, 671, 452–465. [Google Scholar] [CrossRef]
- Heino, J.; Alahuhta, J.; Bini, L.M.; Cai, Y.; Heiskanen, A.; Hellsten, S.; Kortelainen, P.; Kotamäki, N.; Tolonen, K.T.; Vihervaara, P.; et al. Lakes in the Era of Global Change: Moving beyond Single-lake Thinking in Maintaining Biodiversity and Ecosystem Services. Biol. Rev. 2021, 96, 89–106. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- El Saadi, A.M.; Yousry, M.M.; Jahin, H.S. Statistical Estimation of Rosetta Branch Water Quality Using Multi-Spectral Data. Water Sci. 2014, 28, 18–30. [Google Scholar] [CrossRef]
- Vallecillo, S.; Maes, J.; Teller, A.; Babí Almenar, J.; Barredo, J.I.; Trombetti, M.; Malak, A. EU-Wide Methodology to Map and Assess Ecosystem Condition Towards a Common Approach Consistent with a Global Statistical Standard; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystems and Their Services: An Analytical Framework for Ecosystem Assessments; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Edens, B.; Maes, J.; Hein, L.; Obst, C.; Siikamaki, J.; Schenau, S.; Javorsek, M.; Chow, J.; Chan, J.Y.; Steurer, A.; et al. Establishing the SEEA Ecosystem Accounting as a Global Standard. Ecosyst. Serv. 2022, 54, 101413. [Google Scholar] [CrossRef]
- Samarinas, N.; Spiliotopoulos, M.; Tziolas, N.; Loukas, A. Synergistic Use of Earth Observation Driven Techniques to Support the Implementation of Water Framework Directive in Europe: A Review. Remote Sens. 2023, 15, 1983. [Google Scholar] [CrossRef]
- European Environment Agency. European Waters—Assessment of Status and Pressures; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Muller-Karger, F.E. Remote Sensing of Marine Pollution: A Challenge for the 1990s. Mar. Pollut. Bull. 1992, 25, 54–60. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Kumaran, S.S.; Partee, E.B.; Willis, L.P.; Mitchell, K. Potential of Mapping Dissolved Oxygen in the Little Miami River Using Sentinel-2 Images and Machine Learning Algorithms. Remote Sens. Appl. 2022, 26, 100759. [Google Scholar] [CrossRef]
- Kauppila, P.; Meeuwig, J.J.; Pitkänen, H. Predicting Oxygen in Small Estuaries of the Baltic Sea: A Comparative Approach. Estuar. Coast Shelf Sci. 2003, 57, 1115–1126. [Google Scholar] [CrossRef]
- Steinebach, Y. Water Quality and the Effectiveness of European Union Policies. Water 2019, 11, 2244. [Google Scholar] [CrossRef]
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Khan, S.P. Application of Water Quality Indices and Dissolved Oxygen as Indicators for River Water Classification and Urban Impact Assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Tian, S.; Guo, H.; Xu, W.; Zhu, X.; Wang, B.; Zeng, Q.; Mai, Y.; Huang, J.J. Remote Sensing Retrieval of Inland Water Quality Parameters Using Sentinel-2 and Multiple Machine Learning Algorithms. Environ. Sci. Pollut. Res. 2022, 30, 18617–18630. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al. An OLCI-Based Algorithm for Semi-Empirically Partitioning Absorption Coefficient and Estimating Chlorophyll a Concentration in Various Turbid Case-2 Waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
- Avdan, Z.Y.; Kaplan, G.; Goncu, S.; Avdan, U. Monitoring the Water Quality of Small Water Bodies Using High-Resolution Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2019, 8, 553. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C. Dependence of Satellite Ocean Color Data Products on Viewing Angles: A Comparison between SeaWiFS, MODIS, and VIIRS. Remote Sens. Environ. 2016, 175, 120–129. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2018, 11, 64. [Google Scholar] [CrossRef]
- Nguyen, U.N.T.; Pham, L.T.H.; Dang, T.D. An Automatic Water Detection Approach Using Landsat 8 OLI and Google Earth Engine Cloud Computing to Map Lakes and Reservoirs in New Zealand. Environ. Monit. Assess. 2019, 191, 235. [Google Scholar] [CrossRef] [PubMed]
- Theologou, I.; Patelaki, M.; Karantzalos, K. Can Single Empirical Algorithms Accurately Predict Inland Shallow Water Quality Status From High Resolution, Multi-Sensor, Multi-Temporal Satellite Data? Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-7/W3, 1511–1516. [Google Scholar] [CrossRef]
- Carlos González-Márquez, L.; Torres-Bejarano, F.M.; Torregroza-Espinosa, A.C.; Hansen-Rodríguez, I.R.; Rodríguez-Gallegos, H.B. Use of LANDSAT 8 Images for Depth and Water Quality Assessment of El Guájaro Reservoir, Colombia. J. S. Am. Earth Sci. 2018, 82, 231–238. [Google Scholar] [CrossRef]
- Mansaray, A.S.; Dzialowski, A.R.; Martin, M.E.; Wagner, K.L.; Gholizadeh, H.; Stoodley, S.H. Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sens. 2021, 13, 1847. [Google Scholar] [CrossRef]
- Sunar, F.; Dervisoglu, A.; Yagmur, N.; Aslan, E.; Ozguven, M. Analyzing the Retrieval Accuracy of Optically Active Water Components from Satellite Data under Varying Image Resolutions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-1–2023, 595–600. [Google Scholar] [CrossRef]
- Perin, V.; Roy, S.; Kington, J.; Harris, T.; Tulbure, M.G.; Stone, N.; Barsballe, T.; Reba, M.; Yaeger, M.A. Monitoring Small Water Bodies Using High Spatial and Temporal Resolution Analysis Ready Datasets. Remote Sens. 2021, 13, 5176. [Google Scholar] [CrossRef]
- Isidro, C.M.; McIntyre, N.; Lechner, A.M.; Callow, I. Quantifying Suspended Solids in Small Rivers Using Satellite Data. Sci. Total Environ. 2018, 634, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote Sensing of Ecosystem Services: A Systematic Review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-Sensing Estimation of Dissolved Inorganic Nitrogen Concentration in the Bohai Sea Using Band Combinations Derived from MODIS Data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Sharaf El Din, E.; Zhang, Y.; Suliman, A. Mapping Concentrations of Surface Water Quality Parameters Using a Novel Remote Sensing and Artificial Intelligence Framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [Google Scholar] [CrossRef]
- Li, L.; Gu, M.; Gong, C.; Hu, Y.; Wang, X.; Yang, Z.; He, Z. An Advanced Remote Sensing Retrieval Method for Urban Non-Optically Active Water Quality Parameters: An Example from Shanghai. Sci. Total Environ. 2023, 880, 163389. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. A New Approach to Monitor Water Quality in the Menor Sea (Spain) Using Satellite Data and Machine Learning Methods. Environ. Pollut. 2021, 286, 117489. [Google Scholar] [CrossRef]
- Vatitsi, K.; Ioannidou, N.; Mirli, A.; Siachalou, S.; Kagalou, I.; Latinopoulos, D.; Mallinis, G. LULC Change Effects on Environmental Quality and Ecosystem Services Using EO Data in Two Rural River Basins in Thrace, Greece. Land 2023, 12, 1140. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Ntislidou, C.; Lazarina, M.; Papaevangelou, V.; Akratos, C.; Kagalou, I. Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River. Sustainability 2023, 15, 16569. [Google Scholar] [CrossRef]
- Gikas, G.; Dimou, D.; Tsihrintzis, V. River Water Quantity and Quality Monitoring in an Agricultural Basin in North Greece. Fresenius Environ. Bull. 2013, 22, 2006–2016. [Google Scholar]
- Bennett, K.R.; Zeng, J.; Diggins, D.; Nonas-Hunter, L.; Snow, C.; Bennett, A.A. The Development and Implementation of an Automated Coastal Environment Monitoring System. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Virtual, 5–30 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Aqua TROLL® Sondes; In-Situ Inc.: Fort Collins, CO, USA, 2023.
- AddVANTAGE Pro 6.6 User Manual; OTT Hydromet GmbH: Klosterneuburg, Austria, 2017.
- PLANET IMAGERY PRODUCT SPECIFICATIONS; Planet Labs PBC: San Francisco, CA, USA, 2022.
- Tu, Y.-H.; Johansen, K.; Aragon, B.; El Hajj, M.M.; McCabe, M.F. The Radiometric Accuracy of the 8-Band Multi-Spectral Surface Reflectance from the Planet SuperDove Constellation. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103035. [Google Scholar] [CrossRef]
- Rösch, M.; Sonnenschein, R.; Buchelt, S.; Ullmann, T. Comparing PlanetScope and Sentinel-2 Imagery for Mapping Mountain Pines in the Sarntal Alps, Italy. Remote Sens. 2022, 14, 3190. [Google Scholar] [CrossRef]
- Vapnik, V.; Chervonenkis, A.Y. The Method of Ordered Risk Minimization, I. Avtom. Telemekh. 1974, 8, 21–30. [Google Scholar]
- Sallaba, F. Seminar Series Nr 220 The Potential of Support Vector Machine Classification of Land Use and Land Cover Using Seasonality from MODIS Satellite Data. Master’s Thesis, Lund University, Lund, Sweden, 2011. [Google Scholar]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Shaharuddin, S.; Chang, C.K.; Zakaria, N.A.; Ghani, A.A.; Chan, N.W. Prediction of Water Quality Index in Constructed Wetlands Using Support Vector Machine. Environ. Sci. Pollut. Res. 2015, 22, 6208–6219. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Basant, N.; Gupta, S. Support Vector Machines in Water Quality Management. Anal. Chim. Acta 2011, 703, 152–162. [Google Scholar] [CrossRef]
- Pizani, F.M.C.; Maillard, P.; Ferreira, A.F.F.; De Amorim, C.C. Estimation of Water Quality in a Reservoir from Sentinel-2 MSI and Landsat-8 OLI Sensors. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, V-3-2020, 401–408. [Google Scholar] [CrossRef]
- Xu, W.; Duan, L.; Wen, X.; Li, H.; Li, D.; Zhang, Y.; Zhang, H. Effects of Seasonal Variation on Water Quality Parameters and Eutrophication in Lake Yangzong. Water 2022, 14, 2732. [Google Scholar] [CrossRef]
- Mushtaq, F.; Nee Lala, M.G. Remote Estimation of Water Quality Parameters of Himalayan Lake (Kashmir) Using Landsat 8 OLI Imagery. Geocarto Int. 2017, 32, 274–285. [Google Scholar] [CrossRef]
- Boskidis, I.; Gikas, G.D.; Sylaios, G.; Tsihrintzis, V.A. Water Quantity and Quality Assessment of Lower Nestos River, Greece. J. Environ. Sci. Health Part A 2011, 46, 1050–1067. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, R.; Ni, M.; Zhang, J.; Ji, Q.; Xiao, Z. Seasonal Variations of Water Quality Response to Land Use Metrics at Multi-Spatial Scales in the Yangtze River Basin. Environ. Sci. Pollut. Res. 2021, 28, 37172–37181. [Google Scholar] [CrossRef] [PubMed]
- Gikas, G.D. Water Quantity and Hydrochemical Quality Monitoring of Laspias River, North Greece. J. Environ. Sci. Health Part A 2017, 52, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.I.; Vidal, T.; Gonçalves, F.J.M.; Castro, B.B.; Pereira, J.L. Challenges to Water Quality Assessment in Europe—Is There Scope for Improvement of the Current Water Framework Directive Bioassessment Scheme in Rivers? Ecol. Indic. 2021, 121, 107030. [Google Scholar] [CrossRef]
- Kunlasak, K.; Chitmanat, C.; Whangchai, N.; Promya, J.; Lebel, L. Relationships of Dissolved Oxygen with Chlorophyll-a and Phytoplankton Composition in Tilapia Ponds. Int. J. Geosci. 2013, 4, 46–53. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-Based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F. Water Quality Retrieval and Algal Bloom Detection Using High-Resolution Cubesat Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, V-3–2021, 191–195. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
Sensor Site Description | Code | Start Date of Collection | End Date of Collection | Lon (E) | Lat (N) | |
---|---|---|---|---|---|---|
Lissos | Upstream area of river basin by agricultural sites, livestock units, and Natura 2000 protected site. | Lis-1 | 25 March 2022 | 28 October 2022 | 25.6187 | 41.0528 |
Downstream area of river basin at weir structure, by local industrial area, wastewater treatment plant, agricultural sites, and Natura 2000 protected site. | Lis-2 | 25 March 2022 | 28 October 2022 | 25.4920 | 41.0250 | |
Downstream area of river basin by agricultural sites and within Natura 2000 protected site. | Lis-3 | 25 March 2022 | 29 October 2022 | 25.4191 | 41.0179 | |
Laspias | Downstream area of river basin by weir structure and Natura 2000 protected site. | Las-1 | 25 March 2022 | 29 October 2022 | 24.8960 | 40.9711 |
Revisit Time | Equator Crossing Time | Spectral Bands | Wavelength Range (nm) |
---|---|---|---|
Daily at nadir | 9:30–11:30 am (local solar time) | Coastal Blue | 431–452 |
Blue | 465–515 | ||
Green Ι | 513–549 | ||
Green | 547–583 | ||
Yellow | 600–620 | ||
Red | 650–680 | ||
Red-Edge | 697–713 | ||
NIR | 845–885 |
In Situ Sensor | Season | Date Range | No. of Images |
---|---|---|---|
Lis-1 | Spring | 25 March–27 May | 16 |
Summer | 2 June–31 August | 19 | |
Autumn | 1 September–29 October | 7 | |
Total | 42 | ||
Lis-2 | Spring | 25 March–28 May | 14 |
Summer | 3 June–31 August | 19 | |
Autumn | 3 September–28 October | 8 | |
Total | 41 | ||
Lis-3 | Spring | 25 March–30 May | 13 |
Summer | 3 June–29 August | 17 | |
Autumn | 7 September–29 October | 8 | |
Total | 38 | ||
Las-1 | Spring | 25 March–30 May | 18 |
Summer | 6 June–30 August | 23 | |
Autumn | 5 September–28 October | 7 | |
Total | 48 |
Dates | DO (mg/L) | EC (μS/cm) | ||||||
---|---|---|---|---|---|---|---|---|
Lissos River and Laspias River | ||||||||
March to October | Multi-seasonal by Individual Sensor (min/max/mean of the parameters and No. of observations) | |||||||
Lis-1 | Lis-2 | Lis-3 | Las-1 | Lis-1 | Lis-2 | Lis-3 | Las-1 | |
8.120/12.120/ 9.714/42 | 1.950/11.680/ 7.343/38 | 7.170/10.160/ 8.336/38 | 0.070/9.860/ 1.606/49 | 242.2/478.8/383.2/42 | 304.3/604.9/485.0/38 | N/A | 281.4/1459.1/601.1/49 | |
Lissos River | ||||||||
March to October | Multi-seasonal—All Sensors (min/max/mean of the parameters and No. of observations) | |||||||
1.950/12.120/8.507/118 | 242.2/604.9/431.6/80 | |||||||
Seasonal—All Sensors (min/max/mean of the parameters and No. of observations) | ||||||||
March to May (Spring) | 7.140/12.120/9.752/43 | 242.2/480.2/363.4/30 | ||||||
June to August (Summer) | 1.950/9.530/7.525/55 | 358.6/577.4/462.2/38 |
Accuracy Metric | Formula |
---|---|
R2 | |
RMSE | |
ΜAΕ |
Study Area | Water Quality Parameter | Sensor | RMSE | R2 | MAE |
---|---|---|---|---|---|
Lissos | DO | Lis-1 | 0.706 | 0.885 | 0.527 |
Lis-2 | 1.414 | 0.821 | 1.074 | ||
Lis-3 | 0.504 | 0.799 | 0.313 | ||
EC | Lis-1 | 47.946 | 0.849 | 30.359 | |
Lis-2 | 50.676 | 0.693 | 32.185 | ||
Lis-3 | - | - | - | ||
Laspias | DO | Las-1 | 0.766 | 0.653 | 0.822 |
EC | 254.452 | 0.442 | 190.811 |
Water Quality Parameter | Season | RMSE | R2 | MAE |
---|---|---|---|---|
DO | Spring | 1.176 | 0.805 | 0.720 |
Summer | 2.267 | 0.690 | 0.782 | |
EC | Spring | 40.310 | 0.911 | 41.709 |
Summer | 22.989 | 0.764 | 31.749 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatitsi, K.; Siachalou, S.; Latinopoulos, D.; Kagalou, I.; Akratos, C.S.; Mallinis, G. Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery. Water 2024, 16, 758. https://doi.org/10.3390/w16050758
Vatitsi K, Siachalou S, Latinopoulos D, Kagalou I, Akratos CS, Mallinis G. Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery. Water. 2024; 16(5):758. https://doi.org/10.3390/w16050758
Chicago/Turabian StyleVatitsi, Katerina, Sofia Siachalou, Dionissis Latinopoulos, Ifigenia Kagalou, Christos S. Akratos, and Giorgos Mallinis. 2024. "Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery" Water 16, no. 5: 758. https://doi.org/10.3390/w16050758
APA StyleVatitsi, K., Siachalou, S., Latinopoulos, D., Kagalou, I., Akratos, C. S., & Mallinis, G. (2024). Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery. Water, 16(5), 758. https://doi.org/10.3390/w16050758