Adsorption Removal Characteristics of Hazardous Metalloids (Antimony and Arsenic) According to Their Ionic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Hazardous Metalloid Analysis Methods
2.3. Batch Tests
2.4. Continuous Tests
3. Results and Discussion
3.1. Metalloids Analysis Using ASV
3.2. Metalloid Adsorption Removal Characteristics
- -
- Maximum adsorption amount for Sb(III) (qm): MAC >PAC > Zeolite > SP825
- -
- Maximum adsorption amount for Sb(V) (qm): SP825 > MAC > PAC > Zeolite
Category | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
qm | R2 | qm | R2 | ||||
Sb(III) | PAC | 0.126 | 0.1121 | 0.9843 | 0.124 | 0.0482 | 0.9513 |
MAC | 0.159 | 0.0895 | 0.9673 | 0.155 | 0.0298 | 0.9147 | |
Zeolite | 0.056 | 0.1562 | 0.9981 | 0.058 | 0.0781 | 0.9468 | |
SP825 | 0.035 | 0.1701 | 0.9998 | 0.031 | 0.0750 | 0.9678 | |
Sb(V) | PAC | 0.062 | 0.1593 | 0.9975 | 0.058 | 0.0548 | 0.9384 |
MAC | 0.090 | 0.1393 | 0.9930 | 0.096 | 0.0487 | 0.9288 | |
Zeolite | 0.038 | 0.1710 | 0.9996 | 0.033 | 0.0742 | 0.9455 | |
SP825 | 0.118 | 0.1180 | 0.9863 | 0.129 | 0.0318 | 0.9417 |
3.3. Continuous Adsorption Tests
3.4. Identification of As(III) Oxidation during the Adsorption Process
3.5. Confirmation of Removal Characteristics of Metalloid Ions According to Zeta Potential
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry (ATSDR) Public Health Assessment Guidance Manual; U.S. Department of Health and Human Services: Seattle, WA, USA, 1992; PB92–147164.
- Chen, S.L.; Dzeng, S.R.; Yang, M.H.; Chiu, K.H.; Shieh, G.M.; Wai, C.M. Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environ. Sci. Technol. 1994, 28, 877–881. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine (NLM). Hazardous Substances Database. 2005. Available online: https://pubchem.ncbi.nlm.nih.gov/source/11933 (accessed on 5 February 2023).
- The National Institute of Toxicological Research (NITR). Report of Hazard about Heavy Metal—Arsenic; NITR: Seoul, Republic of Korea, 2008; pp. 39, 41, 194.
- United State Environmental Protection Agency (US EPA). Drinking Water Treatability Database. 2021. Available online: https://www.epa.gov/water-research/drinking-water-treatability-database-tdb (accessed on 18 March 2023).
- World Health Organization (WHO). International Agency for Research on Cancer. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr213_E.pdf (accessed on 18 March 2023).
- Youngcheol Kim. Korea Institute of Science and Technology Information (KISTI) Environmental Health Toxicity of Antimony (KAR2010051489); Youngcheol Kim: Daejeon, Republic of Korea, 2016; pp. 1–6. [Google Scholar]
- Multani, R.S.; Feldmann, T.; Demopoulos, G.P. Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options. Hydrometallurgy 2016, 164, 141–153. [Google Scholar] [CrossRef]
- Rae, I.D. Arsenic: Its chemistry, its occurrence in the earth and its release into industry and the environment. ChemTexts 2020, 6, 25. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, F.; Pan, X.; Guo, J.; Wen, D. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. J. Environ. Sci. 2011, 23, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Lou, Z.; Zhou, C.; Yang, K.; Xu, X. Antimony removal from textile wastewater by combining PFS and PAC coagulation: Enhanced Sb(V) removal with presence of dispersive dye. Sep. Purif. Technol. 2021, 275, 119037. [Google Scholar] [CrossRef]
- Islam, A.; Teo, S.H.; Ahmed, M.T.; Khandaker, S.; Ibrahim, M.L.; Vo, D.V.N.; Khan, A.S. Novel micro-structured carbon-based adsorbents for notorious arsenic removal from wastewater. Chemosphere 2021, 272, 129653. [Google Scholar] [CrossRef] [PubMed]
- Filella, M.; Belzile, N.; Chen, Y.W. Antimony in the environment: A review focused on natural waters: II. Relevant solution chemistry. Earth-Sci. Rev. 2002, 59, 265–285. [Google Scholar] [CrossRef]
- Ha, B.H. Structures and properties of zeolite. Hwahak Konghak 1978, 16, 1–12. [Google Scholar]
- Qi, P.; Pichler, T. Competitive adsorption of As(III), As(V), Sb(III) and Sb(V) onto ferrihydrite in multi-component systems: Implications for mobility and distribution. J. Hazard. Mater. 2017, 330, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.S.; Pant, K.K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep. Purif. Technol. 2004, 36, 139–147. [Google Scholar] [CrossRef]
- Whitney, J.E.; Davidson, N. A Spectrophotometric Investigation of the Interaction between Antimony(III) and (V) in Hydrochloric Acid Solutions. J. Am. Chem. Soc. 1949, 71, 3809–3816. [Google Scholar] [CrossRef]
- Beltrán, S.R.; Gómez-Ariza, J.L. Hydride generation atomic fluorescence spectrometry (HG-AFS) as a sensitive detector for Sb(III) and Sb(V) speciation in water. J. Anal. At. Spectrom. 2000, 15, 423–428. [Google Scholar] [CrossRef]
- Lin, T.F.; Wu, J.K. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics. Water Res. 2001, 35, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, G.; Fronæus, S.; Bengtsson-Kloo, L. The kinetics and mechanism of oxidation of hydroxylamine by iron(III). J. Chem. Soc. Dalton Trans. 2002, 12, 2548–2552. [Google Scholar] [CrossRef]
- Jones, A.M.; Collins, R.N.; Waite, T.D. Redox characterization of the Fe(II)-catalyzed transformation of ferrihydrite to goethite. Geochim. Cosmochim. Acta 2017, 218, 257–272. [Google Scholar] [CrossRef]
- Lin, L.; Song, Z.; Huang, Y.; Khan, Z.H.; Qiu, W. Removal and oxidation of arsenic from aqueous solution by biochar impregnated with Fe-Mn oxides. Water Air Soil Pollut. 2019, 230, 105. [Google Scholar] [CrossRef]
- Lee, S. Reactions between As and Fe under the Anoxic Conditions. Ph.D Thesis, Hanyang University, Seoul, Republic of Korea, 2011; pp. 154–156. [Google Scholar]
- Hou, J.; Luo, J.; Song, S.; Li, Y.; Li, Q. The remarkable effect of the coexisting arsenite and arsenate species ratios on arsenic removal by manganese oxide. Chem. Eng. J. 2017, 315, 159–166. [Google Scholar] [CrossRef]
- Chang, S.; Kim, S.; Lee, S.H.; Jeon, B.H.; Choi, J.Y. Redox reaction of Fe(0) with As(V) sorbed onto goethite-coated sand under anoxic conditions. Geosystem Eng. 2012, 15, 33–43. [Google Scholar] [CrossRef]
- Lee, Y. Development of Best Available Technology to Improve Arsenic Treatment Efficiency in Wastewater in Ansan; 19-17-03-30-33; Ansan Green Environment Center: Ansan, Republic of Korea, 2020; pp. 47–49. [Google Scholar]
Category | PAC | MAC | CAC | AA | Zeolite | SP825 |
---|---|---|---|---|---|---|
Surface area (m2/g) | 1100 | 1904 | 1050 | 360 | <800 | 977 |
Density (g/cm3) | 1.21 | 1.16 | 2.10 | 3.97 | 2.37 | 1.01 |
Size (mm) | 0.6–2.4 | 0.6–2.4 | 0.6–2.4 | 2.0 | 1–3 | 0.2–1.2 |
Category | CAC | PAC | Activated Alumina | Zeolite | |
---|---|---|---|---|---|
As(III):As(V) 2:0 | Total As (mg/g) | 2.17 | 1.55 | 2.49 | 0.10 |
As(III) (mg/g) | 3.58 | 2.61 | 2.55 | 0.50 | |
As(III):As(V) 1:1 | Total As (mg/g) | 3.01 | 1.95 | 2.04 | 0.44 |
As(III) (mg/g) | 1.47 | 1.46 | 0.95 | 0.26 | |
As(V) (mg/g) | 1.53 | 0.49 | 1.08 | 0.18 | |
As(III):As(V) 0:2 | Total As (mg/g) | 1.06 | 0.97 | 2.01 | 0.21 |
As(III):As(V) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm | R2 | qm | R2 | |||
2:0 | 2.39 | 0.4201 | 0.9998 | 2.30 | 0.0244 | 0.9795 |
1.5:0.5 | 2.86 | 0.3502 | 0.9997 | 2.74 | 0.0256 | 0.9450 |
1:1 | 3.91 | 0.2560 | 0.9859 | 3.60 | 0.0668 | 0.9981 |
0.5:1.5 | 4.19 | 0.2384 | 0.9858 | 3.80 | 0.0710 | 0.9957 |
0:2 | 4.28 | 0.2336 | 0.9862 | 3.91 | 0.0677 | 0.9995 |
Metal | Concentration (mg) | Metal | Concentration (mg) |
---|---|---|---|
As | N.D | Ag | 0.003 ± 0.001 |
Fe | 9.803 ± 0.005 | Ni | 0.032 ± 0.003 |
Mg | 0.094 ± 0.003 | Pb | N.D |
Ca | 0.914 ± 0.010 | Sr | 0.137 ± 0.006 |
Mn | 0.027 ± 0.009 | Sb | N.D |
Zn | 0.007 ± 0.001 | Ti | 0.298 ± 0.004 |
Al | 10.253 ± 0.057 | V | N.D |
Cd | 0.003 ± 0.001 | Mo | N.D |
Na | 1.731 ± 0.004 | Sn | N.D |
Ba | 0.100 ± 0.008 | Be | 0.006 ± 0.001 |
Metal | Concentration (mg) | ||
---|---|---|---|
As(III):As(V) = 2:0 | As(III):As(V) = 1:1 | As(III):As(V) = 0:2 | |
As | 2.496 ± 0.018 | 3.891 ± 0.084 | 4.235 ± 0.008 |
Fe | 9.900 ± 0.051 | 9.893 ± 0.065 | 9.843 ± 0.007 |
V = k × [As(III)]a[Fe(II)]b | |||
---|---|---|---|
Time (min) | a (M × L−1) | b (M × L−1) | k (L × M−1s−1) |
0 | - | - | - |
5 | 0.997 | 1.193 | 1.56 × 10−3 |
10 | 1.007 | 1.103 | 1.39 × 10−3 |
20 | 1.017 | 1.029 | 1.00 × 10−3 |
30 | 1.101 | 1.013 | 9.60 × 10−4 |
60 | 1.104 | 1.007 | 6.45 × 10−4 |
120 | 1.094 | 0.984 | 4.71 × 10−4 |
240 | 1.016 | 1.005 | 2.74 × 10−4 |
360 | 0.994 | 1.029 | 2.09 × 10−4 |
480 | 0.993 | 1.051 | 1.81 × 10−4 |
600 | - | 1.14 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Chung, J.; Lee, Y.-W. Adsorption Removal Characteristics of Hazardous Metalloids (Antimony and Arsenic) According to Their Ionic Properties. Water 2024, 16, 767. https://doi.org/10.3390/w16050767
Lee S-H, Chung J, Lee Y-W. Adsorption Removal Characteristics of Hazardous Metalloids (Antimony and Arsenic) According to Their Ionic Properties. Water. 2024; 16(5):767. https://doi.org/10.3390/w16050767
Chicago/Turabian StyleLee, Seung-Hun, Jinwook Chung, and Yong-Woo Lee. 2024. "Adsorption Removal Characteristics of Hazardous Metalloids (Antimony and Arsenic) According to Their Ionic Properties" Water 16, no. 5: 767. https://doi.org/10.3390/w16050767
APA StyleLee, S. -H., Chung, J., & Lee, Y. -W. (2024). Adsorption Removal Characteristics of Hazardous Metalloids (Antimony and Arsenic) According to Their Ionic Properties. Water, 16(5), 767. https://doi.org/10.3390/w16050767