Calibration of Hybrid-Maize Model for Simulation of Soil Moisture and Yield in Production Corn Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Fields
2.2. Crop Management
2.3. Measurement of Soil Moisture and Maize Yield
2.4. Model Simulation Setup
2.5. Sensitivity Analysis of Model Parameters
2.6. Multi-Parameter Calibration and Validation
Multi-Parameter Optimization for Soil Moisture and Yield Simulations
- (a)
- The top two parameters that were most sensitive to soil moisture were selected based on the results of OAT and GSA sensitivity analyses.
- (b)
- A grid made of 64 two-parameter combinations (8 × 8 grid nodes) was generated based on the parameter range of each parameter in the pair.
- (c)
- For the 64 two-parameter combinations in (b), the Hybrid-Maize model was run while keeping other sensitive parameters at default values. Soil moisture response (i.e., RMSE between each simulated and observed time series) was recorded for every parameter pair.
- (d)
- The grid generated in (b) and the corresponding soil moisture response in (c) were used to create a 3-dimensional response surface using ordinary kriging interpolation in Surfer 20.1 software. Gaussian and wave components in Surfer are the two variogram models that were used for kriging to give the best output grids with the lowest errors and best cross-validation results. In order to deal with potential trends in the model parameters, AutoFit tool in Surfer 20.1 software was used. This tool takes a user-specified variogram model and an initial set of parameters and attempts to find a better set of parameter values. The response surface generated was made up of 10,000 parameter pairs (100 × 100 nodes) and their corresponding DS values. These are equivalent to 10,000 Hybrid-Maize model simulations.
- (e)
- Cross-validation was carried out to determine the accuracy of the soil moisture DS response surface by randomly selecting 30 nodes (n = 30) from the 10,000 kriged nodes with the exclusion of the 64 nodes in (b). Each of the pair parameters corresponding to the 30 selected output grid was then run using the Hybrid-Maize model and the simulated output was compared with that of the kriged node to ascertain the accuracy of the kriged response surface.
- (f)
- The MPO process was carried out by selecting the parameter pair with the lowest objective function (DS) on the response surface. The lower the DS, the more the simulated daily soil moisture matched the observed daily soil moisture time series.
- (g)
- The averages of the top two most sensitive soil moisture parameters from (f) were fixed and steps (b–f) were repeated for the next two sensitive parameters until all the sensitive parameters had been calibrated. If there was an odd number of sensitive parameters, the least sensitive parameter was calibrated based on OAT approach.
- (h)
- After calibrating for soil moisture, steps (a–g) were repeated for the parameters that were most sensitive to crop yield based on the results of OAT and GSA sensitivity analyses. However, the MPO process for crop yield was carried out by averaging all the parameter combinations that met three constraints similar to [22], but with simulated yield varying between one standard deviation (±SD) of the observed yield instead of ±8% of the observed yield. This approach was deemed appropriate, as SD was indicative of the uncertainty from the natural/inherent yield variation across each field.
2.7. Model Evaluation
3. Results and Discussion
3.1. Weather Conditions of the Experimental Years
3.2. Sensitivity Analysis
3.3. Soil Water Content Calibration and MPO
3.4. Yield Calibration and Multi-Parameter Optimization
3.5. Simulation of Soil Water Content
3.6. Simulation of Yield
3.7. Limitations, Practical Considerations, and Recommendations for Improvement
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2018, 62, 327–350. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Sandhu, R.; Irmak, S. Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation. Agric. Water Manag. 2019, 223, 105687. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R.; Dyke, P.T. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Williams, J.R. The EPIC Model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Wu, L.; Feng, L.; Zhang, Y.; Gao, J.; Wang, J. Comparison of five wheat models simulating phenology under different sowing dates and varieties. Agron. J. 2017, 109, 1280–1293. [Google Scholar] [CrossRef]
- Kothari, K.; Battisti, R.; Boote, K.J.; Archontoulis, S.V.; Confalone, A.; Constantin, J.; Cuadra, S.V.; Debaeke, P.; Faye, B.; Grant, B.; et al. Are soybean models ready for climate change food impact assessments? Eur. J. Agron. 2022, 135, 126482. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of remote sensing on crop models: A review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef]
- Challinor, A.J.; Wheeler, T.R.; Craufurd, P.Q.; Slingo, J.M.; Grimes, D.I.F. Design and optimization of a large-area process-based model for annual crops. Agric. For. Meteorol. 2004, 124, 99–120. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B.; Cahill, K.N.; Bonfils, C. Impacts of future climate change on california perennial crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteorol. 2006, 141, 208–218. [Google Scholar] [CrossRef]
- Therond, O.; Hengsdijk, H.; Casellas, E.; Wallach, D.; Adam, M.; Belhouchette, H.; Oomen, R.; Russell, G.; Ewert, F.; Bergez, J.-E.; et al. Using a cropping system model at regional scale: Low-data approaches for crop management information and model calibration. Agr. Ecosyst. Environ. 2011, 142, 85–94. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment, 3rd ed.; Academic Press: London, UK, 2019. [Google Scholar]
- Angulo, C.; Rötter, R.; Lock, R.; Enders, A.; Fronzek, S.; Ewert, F. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric. For. Meteorol. 2013, 170, 32–46. [Google Scholar] [CrossRef]
- Seidel, S.J.; Palosuo, T.; Thorburn, P.; Wallach, D. Towards improved calibration of crop models—Where are we now and where should we go? Eur. J. Agron. 2018, 94, 25–35. [Google Scholar] [CrossRef]
- Yang, H.S.; Dobermann, A.; Lindquist, J.L.; Walters, D.T.; Arkebauer, T.J.; Cassman, K.G. Hybrid-maize—A maize simulation model that combines two crop modeling approaches. Field Crop Resea. 2004, 87, 131–154. [Google Scholar] [CrossRef]
- Grassini, P.; Yang, H.S.; Cassman, K.G. Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions. Agric. For. Meteorol. 2019, 149, 1254–1265. [Google Scholar] [CrossRef]
- Grassini, P.; Thorburn, J.; Burr, C.; Cassman, K.G. High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crop Res. 2011, 120, 142–150. [Google Scholar] [CrossRef]
- Yang, H.; Grassini, P.; Cassman, K.G.; Aiken, R.M.; Coyne, P.I. Field Crops Research Improvements to the Hybrid-Maize model for simulating maize yields in harsh rainfed environments. Field Crop Res. 2017, 204, 180–190. [Google Scholar] [CrossRef]
- Gibson, J.; Franz, T.E.; Wang, T.; Gates, J.; Grassini, P.; Yang, H.; Eisenhauer, D.E. A case study of field-scale maize irrigation patterns in Western Nebraska: Implications to water managers and recommendations for hyper-resolution land surface modelling. Hydrol. Earth Syst. 2017, 21, 1051–1062. [Google Scholar] [CrossRef]
- Abimbola, O.P.; Franz, T.E.; Rudnick, D.; Heeren, D.; Yang, H.; Wolf, A.; Katimbo, A.; Nakabuye, H.P.; Amori, A. Improving crop modeling to better simulate maize yield variability under different irrigation managements. Agric. Water Manag. 2022, 262, 107429. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Li, S.; Chen, F. Application of the Hybrid-Maize model for limits to maize productivity analysis in a semiarid environment. Sci. Agric. 2012, 69, 300–307. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Meng, Q.; Yang, H.; van Wart, J. Estimating maize yield potential and yield gap with agro-climatic zones in China—Distinguish irrigated and rainfed conditions. Agric. Forest Meteorol. 2017, 239, 108–117. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.S.; Li, Y.F.; Yan, H.J.; Li, J.S. Modeling effects of plastic film mulching on irrigated maize yield and water use efficiency in sub-humid Northeast China. Inter. J. Agric. Bio. Eng. 2017, 10, 69–84. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, B.; Yang, H.; Chen, X. Solar dimming decreased maize yield potential on the North China Plain. Food Energy Secur. 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Duvick, D.N. Biotechnology in the 1930s: The development of hybrid maize. Nat. Rev. Genet. 2001, 2, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Duvick, D.N. Genetic progress in yield of United States maize (Zea mays L.). Maydica 2005, 50, 193–202. [Google Scholar]
- Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar] [CrossRef]
- Egli, D.B. Comparison of corn and soybean yields in the United States: Historical trends and future prospects. Agron. J. 2008, 100, S79–S88. [Google Scholar] [CrossRef]
- Cooper, M.; Gho, C.; Leafgren, R.; Tang, T.; Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product. J. Exp. Bot. 2014, 65, 6191–6204. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, A.K.; Singh, A. Plant Breeding and Cultivar Development; Academic Press Elsevier Inc.: London, UK, 2021; pp. 357–377. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Koehler, A.-K.; Challinor, A. Assessing uncertainty and complexity in regional-scale crop model simulations. Eur. J. Agron. 2017, 88, 84–95. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, J.; Hoffmann, M.P.; Xu, C.; Ma, T.; Huang, J. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Res. 2016, 192, 42–54. [Google Scholar] [CrossRef]
- Wallach, D.; Keussayan, N.; Brun, F.; Lacroix, B.; Bergez, J.-E. Assessing the uncertainty when using a model to compare irrigation strategies. Agron. J. 2012, 104, 1274–1283. [Google Scholar] [CrossRef]
- Liang, H.; Xu, J.; Chen, L.; Li, B.; Hu, K. Bayesian calibration and uncertainty analysis of an agroecosystem model under different N management practices. Eur. J. Agron. 2022, 133, 126429. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Miguez, F.E.; Moore, K.J. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environ. Model. Softw. 2014, 62, 465–477. [Google Scholar] [CrossRef]
- Dumont, B.; Leemans, V.; Mansouri, M.; Bodson, B.; Destain, J.P.; Destain, M.F. Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environ. Model. Softw. 2014, 52, 121–135. [Google Scholar] [CrossRef]
- Chisanga, C.B.; Phiri, E.; Shepande, C.; Sichingabula, H. Evaluating CERES—Maize model using planting dates and nitrogen fertilizer in Zambia. J. Agric. Sci. 2015, 7, 79–97. [Google Scholar] [CrossRef]
- Li, Z.; He, J.; Xu, X.; Jin, X.; Huang, W.; Clark, B.; Yang, G.; Li, Z. Estimating genetic parameters of DSSAT-CERES model with the GLUE method for winter wheat (Triticum aestivum L.) production. Comput. Elect. Agric. 2018, 154, 213–221. [Google Scholar] [CrossRef]
- Sheng, M.; Liu, J.; Zhu, A.X.; Rossiter, D.G.; Liu, H.; Liu, Z.; Zhu, L. Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model. Agric. For. Meteorol. 2019, 278, 107659. [Google Scholar] [CrossRef]
- Liu, X.; Andresen, J.; Yang, H.; Niyogi, D. Calibration and validation of the hybrid-maize crop model for regional analysis and application over the U.S. corn belt. Earth Interact. 2015, 19, 1–16. [Google Scholar] [CrossRef]
- Xiong, W.; Balkovič, J.; van der Velde, M.; Zhang, X.; Izaurralde, R.C.; Skalský, R.; Lin, E.; Mueller, N.; Obersteiner, M. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 2014, 273, 128–139. [Google Scholar] [CrossRef]
- Akhavizadegan, F.; Ansarifar, J.; Wang, L.; Huber, I.; Archontoulis, S.V. A time-dependent parameter estimation framework for crop modeling. Sci. Rep. 2021, 11, 11437. [Google Scholar] [CrossRef] [PubMed]
- Choruma, D.J.; Balkovic, J.; Odume, O.N. Calibration and Validation of the EPIC Model for Maize Production in the Eastern Cape, South Africa. Agronomy 2019, 9, 494. [Google Scholar] [CrossRef]
- Necpálová, M.; Anex, R.P.; Fienen, M.N.; Del Grosso, S.J.; Castellano, M.J.; Sawyer, J.E.; Iqbal, J.; Pantoja, J.L.; Barker, D.W. Understanding the DayCent model: Calibration, sensitivity, and identifiability through inverse modeling. Environ. Model Softw. 2015, 66, 110–130. [Google Scholar] [CrossRef]
- Abedinpour, M.; Sarangi, A.; Rajput, T.B.S.; Singh, M.; Pathak, H.; Ahmad, T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 2012, 110, 55–66. [Google Scholar] [CrossRef]
- Wellens, J.; Raes, D.; Fereres, E.; Diels, J.; Coppye, C.; Adiele, J.G.; Ezui, K.S.G.; Becerra, L.; Selvaraj, M.G.; Dercon, G.; et al. Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz). Agric. Water Manag. 2022, 263, 107491. [Google Scholar] [CrossRef]
- Talebizadeh, M.; Moriasi, D.; Gowda, P.; Steiner, J.L.; Tadesse, H.K.; Nelson, A.M.; Starks, P. Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model. Agric. Water Manag. 2018, 208, 299–306. [Google Scholar] [CrossRef]
- Wallach, D.; Palosuo, T.; Thorburn, P.; Hochman, Z.; Gourdain, E.; Andrianasolo, F.; Asseng, S.; Basso, B.; Buis, S.; Crout, N.; et al. The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environ. Model. Softw. 2021, 145, 105206. [Google Scholar] [CrossRef]
- Yang, H.S.; Dobermann, A.; Cassman, K.G.; Walters, D.T.; Grassini, P. A Simulation Model for Corn Growth and Yield; Hybrid-Maize (ver.2016); Nebraska Cooperative Extension; University of Nebraska-Lincoln: Lincoln, NE, USA, 2016. [Google Scholar]
- Sobol, I.M.; Tarantola, S.; Gatelli, D.; Kucherenko, S.S.; Mauntz, W. Estimating the approximation errors when fixing unessential factors in global sensitivity analysis. Reliab. Eng. Syst. Saf. 2007, 92, 957–960. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Sandhu, R.; Irmak, S. Performance assessment of Hybrid-Maize model for rainfed, limited and full irrigation conditions. Agric. Water Manag. 2020, 242. [Google Scholar] [CrossRef]
- Bao, Y.; Hoogenboom, G.; McClendon, R.; Vellidid, G. A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data. Agric. Syst. 2017, 150, 109–119. [Google Scholar] [CrossRef]
- Kadiyala, M.D.M.; Jones, J.W.; Mylavarapu, R.S.; Li, Y.C.; Reddy, M.D. Identifying irrigation and nitrogen best management practices for aerobic rice–maize cropping system for semi-arid tropics using CERES-rice and maize models. Agric. Water Manag. 2015, 149, 23–32. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. I. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef]
- Miller, R.E.; Colbert, S.R.; Morris, L.A. Effects of heavy equipment on physical properties of soils and on long-term productivity: A review of literature and current research. NCASI Tech. Bull. 2004, 887. Available online: https://www.ncasi.org/wp-content/uploads/2019/02/tb887.pdf (accessed on 1 January 2024).
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Hatano, R. Practices sustaining soil organic matter and rice yield in a tropical monsoon region. Soil Sci. Plant Nutr. 2017, 63, 274–287. [Google Scholar] [CrossRef]
- Barão, L.; Alaoui, A.; Hessel, R. Identifying and Comparing Easily Accessible Frameworks for Assessing Soil Organic Matter Functioning. Agronomy 2023, 13, 109. [Google Scholar] [CrossRef]
- Tokatlidis, I.S.; Koutroubas, S.D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res. 2004, 88, 103–114. [Google Scholar] [CrossRef]
- Kropff, M.J.; van Laar, H.H. (Eds.) Modelling_Crop_Weed_Interactions; International Rice Research Institute: Los Banos, Philippines, 1993; Available online: https://edepot.wur.nl/108849 (accessed on 1 January 2024).
- Tewes, A.; Schellberg, J. Towards remote estimation of radiation use efficiency in maize using UAV-based low-cost camera imagery. Agronomy 2018, 8, 16. [Google Scholar] [CrossRef]
- Paredes, P.; de Melo-Abreu, J.P.; Alves, I.; Pereira, L.S. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef]
- Yang, J.M.; Yang, J.Y.; Liu, S.; Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric Syst. 2014, 127, 81–89. [Google Scholar] [CrossRef]
(a) | ||||
Field | ||||
KF | HF | NKF | SKF | |
2019 | ||||
Planting date | 25 April 2019 | 4 May 2019 | 26 April 2019 | 26 April 2019 |
Harvest date | 8 October 2019 | 15 October 2019 | 10 October 2019 | 11 October 2019 |
Hybrid | Channel 213-19stxrib; Pioneer P1197AM and P1197AMT | Channel 210-79stxrib 212-90stxrib, and 213-19vt2prib | Channel 213-19vt2prib; Pioneer P1197AM and P1370Q | Channel 213-19vt2prib; Pioneer P1197AM and P1370Q |
Weighted average seeding rate (seed/ha) | 81,500 | 80,220 | 90,100 | 87,290 |
Nitrogen fertilizer (kg N/ha) | 281 | 269 | 278 | 280 |
Irrigation amount (mm) | 227 | 214 | 193 | 193 |
Rainfall amount (mm) | 518 | 503 | 514 | 514 |
2020 | ||||
Planting date | 1 May 2020 | 1 May 2020 | 25 April 2020 | 25 April 2020 |
Harvest date | 20 October 2020 | 19 October 2020 | 12 October 2020 | 13 October 2019 |
Seed brand Cultivar | Channel 211-66stx and 213-93stxrib; Pioneer P1108Q | Channel 213-19stxrib; Pioneer P1108Q | Channel 213-19vt2 and 216-36stxrib; Pioneer P1415Q | Channel 213-19vt2 and 216-36stxrib; Pioneer P1415Q |
Weighted average seeding rate (seed/ha) | 81,390 | 78,340 | 86,800 | 87,070 |
Nitrogen fertilizer (Kg N/ha) | 280 | 280 | 280 | 270 |
Irrigation amount (mm) | 278 | 278 | 298 | 302 |
Rainfall amount (mm) | 360 | 360 | 361 | 361 |
(b) | ||||
Field | EF | LF | JF | NF |
2019 | 2020 | |||
Planting date | 2 May 2019 | 24 April 2019 | 26 April 2020 | 26 April 2020 |
Harvest date | 16 October 2019 | 8 October 2019 | 14 October 2020 | 15 October 2020 |
Seed brand Cultivar | Channel 213-19stxrib and 213-19vt2prib | Channel 213-19stxrib; and Pioneer P1197AM | Golden Harvest 13H15 and Pioneer P1415Q | Golden Harvest 13H15 Channel 209-51VT2PRIB, 211-66stx, and 213-19VT2PRIB. |
Weighted average seeding rate (seed/ha) | 79,680 | 80,900 | 78,980 | 82,490 |
Fertilizer (Kg/ha) | 268 | 280 | 283 | 268 |
Irrigation amount (mm) | 202 | 218 | 298 | 284 |
Rainfall amount (mm) | 503 | 518 | 360 | 334 |
Parameter Abbreviation | Parameter Description | Unit | Default Value |
---|---|---|---|
SWC parameters | |||
POR | Porosity | % | 0.4400 |
GAM | Texture-specific constant | cm−2 | 0.0330 |
PSImax | Texture-specific suction boundary | cm | 200 |
Ksat | Saturated hydraulic conductivity | cm/d | 26.50 |
Alfa | Texture-specific geometry constant | cm−1 | 0.0398 |
Ak | Texture-specific empirical constant | cm−2.4 d−1 | 16.40 |
BD | Bulk density | g/cm3 | 1.3 |
Yield parameters | |||
G5 | Potential kernel filling rate | mg kernel−1 day−1 | 8.70 |
G2 | Potential number of kernels per ear | kernel ear−1 | 675 |
ILUE | Initial light use efficiency | g CO2 MJ−1 PAR | 12.5 |
GRG | Growth respiration coefficient of grain | g CH2O g−1 dry matter | 0.490 |
GRL | Growth respiration coefficient of leaf | g CH2O g−1 dry matter | 0.470 |
MPR | Maximum photosynthetic rate | g CO2 m−2 leaf h−1 | 7.0 |
K | Light extinction coefficient | - | 0.55 |
ECT | Efficiency of carbohydrate translocation from stem or leaf to grain | - | 0.260 |
MRG | Maintenance respiration coefficient for grain | g CH2O g−1 dry matter d−1 | 0.0050 |
GRS | Growth respiration coefficient of stem | g CH2O g−1 dry matter | 0.520 |
MFB | Maximum fraction of leaf biomass at silking that can be translocated as carbohydrate from leaf to grain | - | 0.15 |
SLW | Empirical parameter determining the relative contribution of a soil layer to water uptake | - | 3.0 |
2019 Fields | 2020 Fields | |
---|---|---|
Calibration dataset | KF, HF | NKF, SKF |
Validation dataset | NKF, SKF, EF, LF | KF, HF, NF, JF |
Response | Parameter | OAT Slope | Stepwise GSA AIC | Sobol GSA Total Index |
---|---|---|---|---|
Soil moisture | GAM | 15.00 | −438 | 0.90 |
PSImax | 28.00 | −479 | 0.07 | |
BD | 0.27 | −507 | 0.03 | |
Ksat | 0.00 | - | 0.00 | |
AK | 0.00 | - | 0.00 | |
Alfa | 0.00 | - | 0.00 | |
Porosity | 0.00 | - | 0.00 | |
Yield | G5 | 0.69 | 94 | 0.45 |
G2 | 0.66 | 57 | 0.41 | |
ILUE | 0.65 | 9 | 0.12 | |
MPR | 0.13 | 2 | 0.01 | |
GRG | 0.22 | - | 0.01 | |
K | 0.09 | - | - | |
ECT | 0.09 | - | - | |
MRG | 0.04 | - | - | |
GRS | 0.03 | - | - | |
GRL | 0.02 | - | - | |
MFB | 0.00 | - | - | |
SLW | 0.00 | - | - |
Variable | Parameter | Field Calibrated Parameter | SM/GY-PC1 | SM/GY-PC2 | SM/GY-PC3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2019 Wet Year | 2020 Dry Year | HF | KF | NKF | SKF | ||||||
HF | KF | NKF | SKF | ||||||||
Soil | GAM | 0.0280 | 0.0263 | 0.0193 | 0.0330 | 0.0280 | 0.0263 | 0.0193 | 0.0245 | ||
PSImax | 300 | 300 | 300 | 200 | 300 | 300 | 300 | 300 | |||
Yield | G5 | 7.8 | 7.7 | 8.1 | 8.0 | 8.7 | 7.8 | 7.7 | 8.1 | 8.0 | 7.9 |
G2 | 603 | 592 | 625 | 621 | 675 | 603 | 592 | 625 | 621 | 611 | |
ILUE | 12.2 | 12.0 | 12.2 | 12.4 | 12.5 | 12.2 | 12.0 | 12.2 | 12.4 | 12.2 | |
GRG | 0.495 | 0.494 | 0.490 | 0.495 | 0.490 | 0.495 | 0.494 | 0.490 | 0.495 | 0.494 |
(a) | |||||||||||||||||
Year | Field | Goodness-of-Fit Indicators | |||||||||||||||
0–0.3 m Soil Depth (SD1) | 0.3–0.6 m Soil Depth (SD2) | 0–1.0 m Soil Depth (SD3) | |||||||||||||||
RMSE (mm) | NRMSE (%) | MAE (mm) | NSE | d | RMSE (mm) | NRMSE (%) | MAE (mm) | NSE | d | RMSE (mm) | NRMSE (%) | MAE (mm) | NSE | d | |||
SM-PC1 | 2019 | KF | 6.76 | 11.80 | 5.12 | −19.04 | 0.11 | 12.68 | 21.00 | 12.10 | −10.65 | 0.13 | 30.64 | 15.60 | 27.98 | −7.23 | 0.13 |
2020 | NKF | 12.20 | 21.80 | 9.48 | −13.15 | 0.22 | 21.26 | 34.30 | 19.11 | −38.27 | 0.09 | 47.50 | 24.10 | 42.24 | −13.69 | 0.08 | |
SKF | 23.96 | 33.90 | 21.11 | −25.52 | 0.02 | 27.57 | 39.80 | 25.53 | −31.41 | 0.01 | 74.11 | 32.80 | 69.75 | −21.55 | 0.00 | ||
SM-PC2 | 2019 | KF | 6.28 | 11.00 | 4.81 | −7.85 | 0.17 | 11.93 | 19.70 | 11.30 | −9.35 | 0.15 | 27.96 | 14.20 | 25.12 | −5.85 | 0.16 |
2020 | NKF | 10.21 | 18.20 | 7.91 | −8.91 | 0.26 | 12.87 | 20.70 | 8.30 | −13.39 | 0.19 | 25.15 | 12.80 | 19.15 | −3.12 | 0.16 | |
SKF | 11.36 | 16.10 | 9.52 | −4.95 | 0.07 | 11.02 | 15.90 | 6.67 | −4.17 | 0.08 | 23.68 | 10.50 | 19.17 | −1.30 | 0.17 | ||
SM-PC3 | 2019 | KF | 8.53 | 14.90 | 7.44 | −14.99 | 0.08 | 6.22 | 10.30 | 5.47 | −1.80 | 0.39 | 12.99 | 6.60 | 10.77 | −0.48 | 0.45 |
2020 | NKF | 9.96 | 17.80 | 8.12 | −8.43 | 0.29 | 12.68 | 20.40 | 8.15 | −12.96 | 0.19 | 24.12 | 12.20 | 18.76 | −2.79 | 0.18 | |
SKF | 13.27 | 18.80 | 9.33 | −7.13 | 0.02 | 11.20 | 16.10 | 6.71 | −4.35 | −0.07 | 27.62 | 12.20 | 20.13 | −2.13 | 0.17 | ||
(b) | |||||||||||||||||
Year | Field | Goodness-of-Fit Indicators | |||||||||||||||
0–0.3 m Soil Depth (SD1) | 0.3–0.6 m Soil Depth (SD2) | 0–1.0 m Soil Depth (SD3) | |||||||||||||||
RMSE (mm) | NRMSE (%) | MAE (mm) | NSE | d | RMSE (mm) | NRMSE (%) | MAE (mm) | NSE | d | RMSE (mm) | NRMSE (%) | MAE (mm) | NSE | d | |||
SM-PC3 | 2019 | NFK | 8.59 | 15.30 | 7.53 | −10.62 | 0.31 | 3.81 | 6.70 | 2.92 | −1.49 | 0.60 | 20.81 | 11.90 | 18.42 | −8.75 | 0.24 |
SKF | 10.26 | 18.90 | 8.87 | −3.50 | 0.40 | 6.7 | 11.00 | 5.65 | −0.76 | 0.49 | 12.62 | 6.80 | 9.46 | −0.41 | 0.59 | ||
EF | 16.38 | 34.30 | 15.45 | −20.78 | 0.10 | 16.6 | 42.60 | 16.36 | −39.86 | 0.07 | 53.63 | 3.80 | 52.78 | −44.97 | 0.05 | ||
LF | 8.98 | 15.40 | 7.63 | −5.73 | 0.22 | 6.36 | 11.10 | 5.36 | −0.39 | 0.21 | 29.05 | 13.80 | 23.22 | −2.56 | 0.20 | ||
2020 | KF | 10.31 | 17.00 | 8.26 | −5.75 | 0.13 | 17.05 | 26.00 | 14.29 | −8.34 | 0.07 | 36.20 | 17.00 | 29.72 | −4.94 | 0.06 | |
JF | 10.76 | 16.60 | 7.82 | −8.08 | 0.35 | 13.78 | 22.10 | 10.58 | −19.77 | 0.24 | 23.89 | 11.80 | 18.34 | −4.84 | 0.35 | ||
NF | 12.19 | 23.40 | 10.33 | −3.04 | 0.19 | 10.15 | 17.30 | 7.40 | −2.25 | 0.36 | 19.84 | 11.00 | 17.20 | −0.10 | 0.57 |
(a) | ||||||||||
Yield (Mg ha−1) | ||||||||||
Year | Field | Meas | Std. Dev (±) | GY-PC1 | Difference | PD (%) | ||||
2019 | HF | 13.9 | 1.97 | 18.4 | 4.5 | 32.4 | ||||
KF | 13.4 | 1.68 | 18.6 | 5.2 | 38.8 | |||||
NKF | 15.4 | 2.06 | 18.8 | 4.6 | 31.5 | |||||
SKF | 15.6 | 1.28 | 18.8 | 4.3 | 28.9 | |||||
EF | 13.4 | 1.97 | 18.5 | 3.4 | 22.1 | |||||
LK | 12.7 | 1.96 | 15.9 | 3.2 | 20.5 | |||||
2020 | NKF | 14.6 | 3.19 | 19.2 | 5.1 | 38.1 | ||||
SKF | 14.9 | 2.62 | 19.2 | 3.2 | 25.2 | |||||
HF | 13.6 | 2.29 | 18.6 | 5.0 | 36.8 | |||||
KF | 13.2 | 2.6 | 15.6 | 2.4 | 18.2 | |||||
JF | 13.3 | 2.74 | 17.3 | 4 | 30.1 | |||||
NF | 15.0 | 2.55 | 18.5 | 3.5 | 23.3 | |||||
MAE (Mg/ha) | 4.03 | |||||||||
RMSE (Mg/ha) | 4.12 | |||||||||
NRMSE (%) | 29.00 | |||||||||
(b) | ||||||||||
Year | Calibration Yield (Mg ha−1) | Validation (Mg ha−1) | ||||||||
Field | Meas. | GY-PC1 | GY-PC2 | GY-PC3 | Year | Field | Meas. | GY-PC1 | GY-PC3 | |
2019 | HF | 13.9 | 18.4 | 15.0 | 15.4 | 2019 | NKF | 15.4 | 18.8 | 15.8 |
SKF | 15.6 | 18.8 | 15.8 | |||||||
KF | 13.4 | 18.6 | 14.6 | 15.6 | EF | 13.4 | 18.5 | 15.6 | ||
LK | 12.7 | 15.9 | 12.9 | |||||||
2020 | NKF | 14.6 | 19.2 | 16.3 | 15.6 | 2020 | HF | 13.6 | 18.6 | 15.1 |
KF | 13.2 | 15.6 | 12.7 | |||||||
SKF | 14.9 | 19.2 | 16.1 | 15.6 | JF | 13.3 | 17.3 | 14.0 | ||
NF | 15.0 | 18.5 | 15.0 | |||||||
MAE (Mg/ha) | 4.65 | 1.30 | 1.35 | MAE | 3.73 | 0.71 | ||||
RMSE (Mg/ha) | 4.66 | 1.32 | 1.47 | RMSE | 3.83 | 1.00 | ||||
nRMSE (%) | 33.00 | 9.30 | 10.30 | nRMSE | 27.30 | 7.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amori, A.A.; Abimbola, O.P.; Franz, T.E.; Rudnick, D.; Iqbal, J.; Yang, H. Calibration of Hybrid-Maize Model for Simulation of Soil Moisture and Yield in Production Corn Fields. Water 2024, 16, 788. https://doi.org/10.3390/w16050788
Amori AA, Abimbola OP, Franz TE, Rudnick D, Iqbal J, Yang H. Calibration of Hybrid-Maize Model for Simulation of Soil Moisture and Yield in Production Corn Fields. Water. 2024; 16(5):788. https://doi.org/10.3390/w16050788
Chicago/Turabian StyleAmori, Anthony A., Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal, and Haishun Yang. 2024. "Calibration of Hybrid-Maize Model for Simulation of Soil Moisture and Yield in Production Corn Fields" Water 16, no. 5: 788. https://doi.org/10.3390/w16050788
APA StyleAmori, A. A., Abimbola, O. P., Franz, T. E., Rudnick, D., Iqbal, J., & Yang, H. (2024). Calibration of Hybrid-Maize Model for Simulation of Soil Moisture and Yield in Production Corn Fields. Water, 16(5), 788. https://doi.org/10.3390/w16050788