Parameter Sensitivity Analysis of a Korean Debris Flow-Induced Rainfall Threshold Estimation Algorithm
Abstract
:1. Introduction
2. Theoretical Background
2.1. Automated Rainfall Estimation Program for Debris Flow Disasters
2.2. Algorithm for Calculating Debris Flow-Induced Rainfall Thresholds
3. Calculation and Verification of Rainfall Thresholds
3.1. Collection of Information on the Occurrence of Debris-Flow Disasters
3.2. Meteorological Stations and Collection of Rainfall Information
3.3. Setting the Influence Distance of Meteorological Stations
4. Analysis Results
5. Summary and Conclusions
- (1)
- Rainfall criteria that cause sediment disasters are mainly presented using the I-D method for analyzing the relationship between rainfall intensity and duration. However, the methodologies for selecting the representative rain gauge and the definition of rainfall that causes debris-flow disasters may vary. Thus, it is necessary to use an automatic program that can derive objective results for them. Overseas, the development and applicability evaluation of automatic rainfall calculation programs for debris-flow disasters has been conducted in Italy and India. This study conducted basic research to develop programs suitable for Korea and evaluate their applicability.
- (2)
- In previous studies, there were limitations in using subjective methodologies for selecting impact meteorological stations and preceding rainfall, which had a high impact on the reliability of the criteria for debris flow-induced rainfall. This study adjusted the maximum allowed distance to 1, 3, 5, 7, 9, 11, 13, and 15 km using an automatic calculation algorithm for debris flow-induced rainfall thresholds, and a sensitivity analysis was performed automatically. As a result of applying the automatic calculation algorithm and the maximum allowed distance scenario to the Gangwon-do region, quantitatively checking the change in the cumulative rainfall by duration according to EPs was possible. Based on this information, a nomogram was developed for the prediction and warning of the risk of sediment disasters in the Gangwon-do region.
- (3)
- The results of applying this study to Sinnam Village, Samcheok City, which was affected by a debris-flow disaster in 2019, showed that the risk of debris-flow disasters increases with the occurrence of rainfall, and that the risk forecast for the severe stage can be predicted as early as 4.3, 4.6, 4.9, and 5.2 h in advance of the very severe stage, depending on the maximum allowable distance from the rain gauge (9, 11, 13, and 15 km, respectively).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, J.R. An Analysis of Debris-Flow Propagation Characteristics and Assessment of Building Hazard Mapping Using FLO-2D–The Case of Chuncheon Landslide Area. Crisis Emerg. Manag. 2018, 14, 91–99. [Google Scholar] [CrossRef]
- Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T. How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat. Hazards 2019, 100, 655–670. [Google Scholar] [CrossRef]
- Chae, B.-G.; Choi, J.; Jeong, H.K. A Feasibility Study of a Rainfall Triggeirng Index Model to Warn Landslides in Korea. J. Eng. Geol. 2016, 26, 235–250. [Google Scholar] [CrossRef]
- Aleotti, P. A warning system of rainfall-induced shallow failure. Eng. Geol. 2004, 73, 247–265. [Google Scholar] [CrossRef]
- Keefer, D.K.; Wilson, R.C.; Mark, R.K.; Brabb, E.E.; Brown, W.M., III; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin, R.S. Realtime landslide warning during heavy rainfall. Science 1987, 238, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Paswan, A.P.; Shrivastava, A.K. Evaluation of a Tilt-Based Monitoring System for Rainfall-Induced Landslides: Development and Physical Modelling. Water 2023, 15, 1862. [Google Scholar] [CrossRef]
- Pan, H.-L.; Jiang, Y.-J.; Wang, J.; Ou, G.-Q. Rainfall threshold calculation for debris flow early warning in areas with scarcity of data. Nat. Hazards Earth Syst. 2018, 18, 1395–1409. [Google Scholar] [CrossRef]
- Wang, H.; Xu, B.; Zhang, J.; Guo, X.; Zeng, Q.; Zhang, L. Rainfall thresholds of debris flows based on varying rainfall intensity types in the mountain areas of Beijing. Geomat. Nat. Hazards Risk 2022, 13, 2166–2181. [Google Scholar] [CrossRef]
- Deng, M.; Chen, N.; Ding, H. Rainfall characteristics and thresholds for periglacial debris flows in the Parlung Zangbo Basin, southeast Tibetan Plateau. J. Earth Syst. Sci. 2018, 127, 11. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Hu, W.; Guo, X.; Ma, C.; Wang, Z.; Zhang, Q. A multiobjective evolutionary optimization method based critical rainfall thresholds for debris flows initiation. J. Mt. Sci. 2020, 17, 1860–1873. [Google Scholar] [CrossRef]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 2015, 12, 311–320. [Google Scholar] [CrossRef]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 2015, 13, 165–172. [Google Scholar] [CrossRef]
- Luino, F.; De Graff, J.; Roccati, A.; Biddoccu, M.; Cirio, C.G.; Faccini, F.; Turconi, L. Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 2020, 12, 133. [Google Scholar] [CrossRef]
- Wu, M.-H.; Wang, J.P.; Chen, I.-C. Optimization approach for determining rainfall duration-intensity thresholds for debris flow forecasting. Bull. Eng. Geol. Environ. 2018, 78, 2495–2501. [Google Scholar] [CrossRef]
- Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7, 259–272. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Liu, S. Rainfall Event–Duration Thresholds for Landslide Occurrences in China. Water 2020, 12, 494. [Google Scholar] [CrossRef]
- Roccati, A.; Paliaga, G.; Luino, F.; Faccini, F.; Turconi, L. Rainfall Threshold for Shallow Landslides Initiation and Analysis of Long-Term Rainfall Trends in a Mediterranean Area. Atmosphere 2020, 11, 1367. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chen, C.-Y. Warning Models for Landslide and Channelized Debris Flow under Climate Change Conditions in Taiwan. Water 2022, 14, 695. [Google Scholar] [CrossRef]
- Campbell, R.H. Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California; US Government Printing Office: Washington, DC, USA, 1975. [Google Scholar]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. 1980, 62, 23–27. [Google Scholar]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible oc-currence of landslides in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef]
- Piciullo, L.; Gariano, S.L.; Melillo, M.; Brunetti, M.T.; Preruccacci, S.; Guzzetti, F. Definition and performance of a threshold-based refional early warning model for rainfall-induced landslides. Landslides 2017, 14, 995–1008. [Google Scholar] [CrossRef]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Roccati, A.; Guzzetti, F. A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ. Model. Softw. 2018, 105, 230–243. [Google Scholar] [CrossRef]
- Jordanova, G.; Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T.; Auflič, M.J. Determination of Empirical Rainfall Thresholds for Shallow Landslides in Slovenia Using an Automatic Tool. Water 2020, 12, 1449. [Google Scholar] [CrossRef]
- Distefano, P.; Peres, D.; Scandura, P.; Cancelliere, A. Brief communication: Rainfall thresholds based on Artificial neural networks can improve landslide early warning. Nat. Hazards Earth Syst. Sci. 2021, 22, 1–9. [Google Scholar]
- Cai, J.; Zhang, Y.; Li, Y.; Liang, X.S.; Jiang, T. Analyzing the Characteristics of Soil Moisture Using GLDAS Data: A Case Study in Eastern China. Appl. Sci. 2017, 7, 566. [Google Scholar] [CrossRef]
- Shuang, H.; Xia, L.; Jason, G.; Haitong, T.; Qin, Y.; Kaiyue, L.; Haozhou, D.; Chungqi, C.; Nizhuan, W. RSI-Net: Two-Stream Deep Neural Network for Remote Sensing Images-Based Semantic Segmentation. IEEE Access. 2022, 10, 34858–34871. [Google Scholar] [CrossRef]
- Youliang, C.; Xiangjun, Z.; Hamed, K.; Gang, X.; Jinsong, H. A novel framework for prediction of dam deformation based on extreme learning machine and Lévy flight bat algorithm. J. Hydroinform. 2021, 23, 935–949. [Google Scholar] [CrossRef]
- Tang, H.; McGuire, L.A.; Rengers, F.K.; Kean, J.W.; Staley, D.M.; Smith, J.B. Developing and testing physicallybased triggering thresholds forrunoff-generated debris flows. Geophys. Res. Lett. 2019, 46, 8830–8839. [Google Scholar] [CrossRef]
- Chiang, J.-L.; Kuo, C.-M.; Fazeldehkordi, L. Using Deep Learning to Formulate the Landslide Rainfall Threshold of the Potential Large-Scale Landslide. Water 2022, 14, 3320. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Kushal, S.; Rosi, A.; Pradhan, B.; Segoni, S. Rainfall Threshold Estimation and Landslide Forecasting for Kalimpong, India Using SIGMA Model. Water 2020, 12, 1195. [Google Scholar] [CrossRef]
- Nam, D.H.; Lee, S.H.; Kim, M.I.; Kim, B.S. Calculation of Rainfall Triggering Index (RTI) to Predict the Occurrence of Debris Flow. J. Eng. Geol. 2018, 28, 47–59. [Google Scholar]
- Lee, J.S.; Kang, H.S.; Suk, J.W.; Kim, Y.T. Development of Hazard Level-based Rainfall Threshold for Prediction of Rainfall-induced Landslide Occurrence in Korea. J. Korean Soc. Hazard Mitig. 2019, 19, 225–236. [Google Scholar] [CrossRef]
- Pruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139–140, 79–90. [Google Scholar] [CrossRef]
- Choi, J.R.; An, S.W.; Choo, K.S.; Kim, D.H.; Lim, H.K.; Kim, B.S. Development of An Automatic Calculation Algorithm for Rainfall Thresholds of Debris Flow in Korea. J. Korean Soc. Hazard Mitig. 2022, 22, 113–123. [Google Scholar] [CrossRef]
No. | Date (Year Month Day Hour Minute) | Longitude | Latitude | Administrative Division | Start Date and End Date of the Rainfall | Cumulated Rainfall (mm) |
---|---|---|---|---|---|---|
1 | 5 August 2020, 06:00 | 128.4609 | 38.4484 | Geojin-eup, Goseong-gun | 3 August 2020–5 August 2020 | 348 |
2 | 5 August 2020, 06:00 | 128.4627 | 38.4510 | Geojin-eup, Goseong-gun | 3 August 2020–5 August 2020 | 348 |
3 | 5 August 2020, 06:00 | 128.4042 | 38.5438 | Hyeonnae-myeon, Goseong-gu | 3 August 2020–5 August 2020 | 348 |
4 | 3 August 2020, 09:00 | 127.7334 | 37.8923 | Chuncheon-si | 3 August 2020–3 August 2020 | 179 |
5 | 2 August 2020, 02:00 | 128.1731 | 37.3508 | Gangnim-myeon, Hoengseong-gun | 3 August 2020–3 August 2020 | 136 |
6 | 2 August 2020, 06:00 | 128.5316 | 37.1413 | Yeongwol-gun | 2 August 2020–2 August 2020 | 204 |
7 | 3 October 2019, 00:56 | 129.3241 | 37.2703 | Wondeok-eup, Samcheok-si | 2 October 2019–3 October 2019 | 390 |
8 | 2 October 2019, 20:00 | 129.3209 | 37.1614 | Wondeok-eup, Samcheok-si | 2 October 2019–3 October 2019 | 390 |
9 | 2 October 2019, 23:00 | 128.3314 | 37.2569 | Wondeok-eup, Samcheok-si | 2 October 2019–3 October 2019 | 390 |
10 | 2 October 2019, 23:00 | 128.3264 | 37.2525 | Wondeok-eup, Samcheok-si | 2 October 2019–3 October 2019 | 390 |
11 | 12 August 2019, 21:20 | 127.8270 | 38.1604 | Hwacheon-eup, Hwacheon-gun | 11 August 2019–12 August 2019 | 48 |
12 | 20 August 2017, 02:30 | 127.9584 | 37.8150 | Hwachon-myeon, Hongcheon-gun | 19 August 2017–20 August 2017 | 33 |
13 | 20 August 2017, 02:30 | 127.9650 | 37.7980 | Hwachon-myeon, Hongcheon-gun | 19 August 2017–20 August 2017 | 33 |
14 | 14 July 2013, 07:30 | 128.2136 | 38.0402 | Inje-eup, Inje-gun | 14 July 2013–14 July 2013 | 142 |
15 | 14 July 2013, 08:20 | 128.4138 | 38.0919 | Seo-myeon, Chuncheon-si | 14 July 2013–14 July 2013 | 125 |
16 | 14 July 2013, 08:50 | 127.7564 | 37.8454 | Dongsan-myeon, Chuncheon-si | 14 July 2013–14 July 2013 | 125 |
17 | 14 July 2013, 09:30 | 127.7822 | 37.8247 | Dongnae-myeon, Chuncheon-si | 14 July 2013–14 July 2013 | 125 |
18 | 27 July 2011, 00:08 | 127.7920 | 37.9356 | Sinbuk-eup, Chuncheon-si | 27 July 2011–27 July 2011 | 262 |
No. | ID | Name | Lon. | Lat. |
---|---|---|---|---|
1 | 310 | GungChon | 129.2647 | 37.32471 |
2 | 320 | Hyangnobong | 128.3138 | 38.33104 |
3 | 321 | Wontong | 128.1963 | 38.1147 |
4 | 322 | Sangseo | 127.6857 | 38.23158 |
5 | 517 | Ganseong | 128.4745 | 38.38536 |
6 | 518 | Haean | 128.1211 | 38.26958 |
7 | 519 | Sanae | 127.5194 | 38.07545 |
8 | 522 | Hwachon | 127.9838 | 37.78712 |
9 | 523 | Jumunjin | 128.8214 | 37.89848 |
10 | 524 | Gangmun | 128.9248 | 37.78579 |
11 | 527 | Sindong | 128.6413 | 37.21108 |
12 | 529 | Wondeok | 129.2859 | 37.14156 |
13 | 536 | Hoengseong | 127.9724 | 37.4876 |
14 | 537 | Imgye | 128.8459 | 37.48323 |
15 | 554 | Misiryeong | 128.4371 | 38.21439 |
16 | 555 | Hwacheon | 127.7029 | 38.09638 |
17 | 556 | Yanggu | 127.9853 | 38.09799 |
18 | 557 | Girin | 128.3186 | 37.95263 |
19 | 558 | Palbong | 127.7007 | 37.68614 |
20 | 559 | Nae-myeon | 128.3973 | 37.77805 |
21 | 560 | Jinbu | 128.5645 | 37.64793 |
22 | 561 | Cheongil | 128.1528 | 37.58219 |
23 | 562 | Yeongwol-Jucheon | 128.2694 | 37.27534 |
24 | 563 | Bukpyeong | 128.6828 | 37.46356 |
25 | 579 | Hajang | 128.9133 | 37.36684 |
26 | 580 | Okgye | 129.0289 | 37.61345 |
27 | 581 | Sangdong | 128.7744 | 37.11663 |
28 | 582 | Sillim | 128.0799 | 37.23146 |
29 | 583 | Anheung | 128.1551 | 37.46463 |
30 | 585 | Sinnam | 128.0742 | 37.95996 |
31 | 587 | Bangsan | 127.9533 | 38.22642 |
32 | 588 | Namsan | 127.6429 | 37.79066 |
33 | 593 | Yangyang-Yeongdeok | 128.5407 | 38.00731 |
34 | 597 | Daehwa | 128.4411 | 37.54548 |
35 | 661 | Hyeonnae | 128.4025 | 38.54385 |
36 | 670 | Yangyang | 128.6297 | 38.08725 |
37 | 671 | Cheongho | 128.5936 | 38.19091 |
38 | 674 | Sabuk | 128.8214 | 37.21963 |
39 | 678 | Gangneung-Seongsan | 128.778 | 37.7244 |
40 | 679 | Gangneung-Wangsan | 128.7726 | 37.61058 |
41 | 681 | Wondong | 127.8117 | 38.24379 |
42 | 684 | Chunchon-Sinbuk | 127.7763 | 37.9546 |
43 | 696 | Singi | 129.0861 | 37.34661 |
44 | 875 | Seorak | 128.4606 | 38.12107 |
45 | 876 | Samcheok | 129.1621 | 37.45003 |
46 | 878 | Dogye | 129.0961 | 37.22379 |
No. | Maximum Allowed Distance (km) | Exceedance Probability (%) | ||||
---|---|---|---|---|---|---|
1 | 9 | 70 | 48.5 | 23.8 | 0.22 | 0.13 |
2 | 50 | 38.1 | 19.6 | 0.22 | 0.13 | |
3 | 10 | 32.9 | 16.6 | 0.22 | 0.13 | |
4 | 11 | 70 | 48.5 | 23.8 | 0.24 | 0.15 |
5 | 50 | 38.1 | 19.6 | 0.24 | 0.15 | |
6 | 10 | 28.0 | 15.5 | 0.24 | 0.15 | |
7 | 13 | 70 | 48.5 | 23.8 | 0.21 | 0.13 |
8 | 50 | 38.1 | 19.6 | 0.21 | 0.13 | |
9 | 10 | 29.1 | 15.9 | 0.21 | 0.13 | |
10 | 15 | 70 | 48.5 | 23.8 | 0.15 | 0.12 |
11 | 50 | 38.1 | 19.6 | 0.15 | 0.12 | |
12 | 10 | 36.8 | 17.5 | 0.15 | 0.12 |
Maximum Allowed Distance (km) | Exceedance Probability (%) | Rainfall Duration (h) | Cumulative Rainfall (mm) | Rainfall Intensity (mm/h) |
---|---|---|---|---|
9 | 70 | 6 | 74.6 | 12.4 |
12 | 88.1 | 7.3 | ||
24 | 104.0 | 4.3 | ||
50 | 6 | 56.5 | 9.4 | |
12 | 65.8 | 5.5 | ||
24 | 76.7 | 3.2 | ||
10 | 6 | 48.8 | 8.1 | |
12 | 56.8 | 4.7 | ||
24 | 66.2 | 2.8 | ||
11 | 70 | 6 | 74.6 | 12.4 |
12 | 88.1 | 7.3 | ||
24 | 104.0 | 4.3 | ||
50 | 6 | 58.6 | 9.8 | |
12 | 69.2 | 5.8 | ||
24 | 81.7 | 3.4 | ||
10 | 6 | 43.0 | 7.2 | |
12 | 80.5 | 4.2 | ||
24 | 60.0 | 2.5 | ||
13 | 70 | 6 | 70.7 | 11.8 |
12 | 81.7 | 6.8 | ||
24 | 94.5 | 3.9 | ||
50 | 6 | 55.5 | 9.3 | |
12 | 64.2 | 5.4 | ||
24 | 74.3 | 3.1 | ||
10 | 6 | 42.4 | 7.1 | |
12 | 49.0 | 4.1 | ||
24 | 56.7 | 2.4 | ||
15 | 70 | 6 | 63.5 | 10.6 |
12 | 70.4 | 5.9 | ||
24 | 78.1 | 3.3 | ||
50 | 6 | 49.8 | 8.3 | |
12 | 55.3 | 4.6 | ||
24 | 61.4 | 2.6 | ||
10 | 6 | 48.1 | 8.0 | |
12 | 53.4 | 4.5 | ||
24 | 59.3 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choo, K.-S.; Choi, J.-R.; Lee, B.-H.; Kim, B.-S. Parameter Sensitivity Analysis of a Korean Debris Flow-Induced Rainfall Threshold Estimation Algorithm. Water 2024, 16, 828. https://doi.org/10.3390/w16060828
Choo K-S, Choi J-R, Lee B-H, Kim B-S. Parameter Sensitivity Analysis of a Korean Debris Flow-Induced Rainfall Threshold Estimation Algorithm. Water. 2024; 16(6):828. https://doi.org/10.3390/w16060828
Chicago/Turabian StyleChoo, Kyung-Su, Jung-Ryel Choi, Byung-Hyun Lee, and Byung-Sik Kim. 2024. "Parameter Sensitivity Analysis of a Korean Debris Flow-Induced Rainfall Threshold Estimation Algorithm" Water 16, no. 6: 828. https://doi.org/10.3390/w16060828
APA StyleChoo, K. -S., Choi, J. -R., Lee, B. -H., & Kim, B. -S. (2024). Parameter Sensitivity Analysis of a Korean Debris Flow-Induced Rainfall Threshold Estimation Algorithm. Water, 16(6), 828. https://doi.org/10.3390/w16060828