Immobilization Behavior and Mechanism of Cd2+ by Sulfate-Reducing Bacteria in Anoxic Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source and Cultivation Conditions of SRB
2.2. Biological Immobilization of Cd2+ by SRB under Anoxic Conditions
2.3. Characterization of Metallic Precipitates
2.4. Analytical Methods
3. Results and Discussion
3.1. Analysis of Factors Influencing the Immobilization of Cd2+ by SRB
3.1.1. The Influence of Initial Cd2+ Concentration on the Immobilization Performance of SRB
3.1.2. The Influence of Initial SO42− Concentration on the Immobilization Performance of SRB
3.1.3. The Influence of Temperature on the Immobilization Performance of SRB
3.1.4. The Influence of Initial pH on the Immobilization Performance of SRB
3.1.5. The Influence of Carbon-to-Nitrogen (C/N) Ratio on the Immobilization Performance of SRB
3.2. SEM–EDS Analysis
3.3. XPS Analysis
4. Conclusions
- (1)
- Under anoxic conditions, SRB demonstrates excellent immobilization efficiency for Cd2+ after enrichment cultivation in modified Baar’s sulfate medium. When the initial Cd2+ concentration does not exceed 30 mg/L, the initial SO42− concentration is 1200 mg/L, the temperature ranges from 25 °C to 35 °C, the pH is neutral, and the C/N ratio is 20:1, the fixation rate of Cd2+ by SRB exceeds 90%, and the SRB strains exhibit robust growth.
- (2)
- SEM–EDS and XPS analyses reveal that functional groups containing C, O, P, and S on SRB are involved in the immobilization process under anoxic conditions. Additionally, a precipitation reaction occurs during the immobilization of Cd2+ by SRB, resulting in the formation of CdS and Cd(OH)2. Therefore, the primary mechanism of SRB immobilization of Cd2+ under anoxic conditions involves both biological adsorption and chemical precipitation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Q.; Li, X.; Wang, Y.; Cheng, Y.; Fan, W. Long-term bioremediation of cadmium contaminated sediment using sulfate reducing bacteria: Perspective on different depths of the sediment profile. Chem. Eng. J. 2023, 451, 138697. [Google Scholar] [CrossRef]
- Yuan, S.; Hong, M.; Li, H.; Ye, Z.; Gong, H.; Zhang, J.; Huang, Q.; Tan, Z. Contributions and mechanisms of components in modified biochar to adsorb cadmium in aqueous solution—ScienceDirect. Sci. Total Environ. 2020, 733, 139320. [Google Scholar] [CrossRef]
- Zhu, X.; Song, T.; Lv, Z.; Ji, G. High-efficiency and low-cost α-Fe2O3 nanoparticles-coated volcanic rock for Cd(II) removal from wastewater. Process Saf. Environ. Prot. 2016, 104, 373–381. [Google Scholar] [CrossRef]
- Uki-Osi, D.; Barali, K.; Javorac, D.; Orevi, A.B.; Bulat, Z. An overview of molecular mechanisms in cadmium toxicity. Curr. Opin. Toxicol. 2019, 19, 56–62. [Google Scholar]
- Wang, X.; Hu, K.; Xu, Q.; Lu, L.; Wang, G. Immobilization of Cd Using Mixed Enterobacter and Comamonas Bacterial Reagents in Pot Experiments with Brassica rapa L. Environ. Sci. Technol. 2020, 54, 15731–15741. [Google Scholar] [CrossRef]
- Tyagi, S.; Malik, W.; Annachhatre, A.P. Heavy metal precipitation from sulfide produced from anaerobic sulfidogenic reactor. Mater. Today Proc. 2020, 32, 936–942. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Li, M.; Luo, D.; Chen, Y.; Chen, D.; Luo, H.; Chen, Z.; Li, K. Immobilizing Metal-Resistant Sulfate-Reducing Bacteria for Cadmium Removal from Aqueous Solutions. Pol. J. Environ. Stud. 2018, 27, 2851–2859. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Kang, Y.; Quan, H.; Han, Y.; Sun, J.; Feng, Y. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron. J. Environ. Manag. 2013, 129, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lan, S.-M.; Zhu, Z.-P.; Zhang, C.; Zeng, G.-M.; Livu, Y.-G.; Cao, W.-C.; Song, B.; Yang, H.; Wang, S.-F.; et al. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Ecotoxicol. Environ. Saf. 2018, 158, 162–170. [Google Scholar] [CrossRef]
- Dong, Y.R.; Gao, Z.Q.; Di, J.Z.; Wang, D.; Yang, Z.H.; Wang, Y.F.; Xie, Z.F. Study on the Effectiveness of Sulfate Reducing Bacteria to Remove Heavy Metals (Fe, Mn, Cu, Cr) in Acid Mine Drainage. Sustainability 2023, 15, 5486. [Google Scholar] [CrossRef]
- Liamleam, W.; Annachhatre, A.P. Treating industrial discharges by thermophilic sulfate reduction process with molasses as electron donor. Environ. Technol. 2007, 28, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, G.L.; Kjeldsen, K.U.; Ingvorsen, K. Desulfovibrio aerotolerans sp nov., an oxygen tolerant sulphatereducing bacterium isolated from activated sludge. Anaerobe 2005, 11, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, K.U.; Joulian, C.; Ingvorsen, K. Oxygen Tolerance of Sulfate-Reducing Bacteria in Activated Sludge. Environ. Sci. Technol. 2004, 38, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, L.K.; Reid, R.P.; Dupraz, C.; Decho, A.W.; Buckley, D.H.; Spear, J.R.; Przekop, K.M.; Visscher, P.T. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sediment. Geol. 2015, 185, 131–145. [Google Scholar] [CrossRef]
- Antony, P.J.; Raman, R.K.S.; Kumar, P.; Raman, R. Corrosion of 2205 duplex stainless steel weldment in chloride medium containing sulfate-reducing bacteria. Metall. Mater. Trans. a-Phys. Metall. Mater. Sci. 2008, 39A, 2689–2697. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Yang, Y.; Zhang, Z.; Tang, Y.; Su, P.; Lin, Z. A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. J. Clean. Prod. 2022, 376, 134109. [Google Scholar] [CrossRef]
- Laso-Pérez, R.; Krukenberg, V.; Musat, F.; Wegener, G. Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions. Nat. Protoc. 2018, 13, 1310–1330. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.X.; Xiao, Y.; Zhao, J.X.; Tian, F.W.; Zhang, H.; Narbad, A.; Chen, W. Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Sci. Rep. 2017, 7, 1182. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-N.; Chen, Y. Advances in heavy metal removal by sulfate-reducing bacteria. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2020, 81, 1797–1827. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, S.; Bai, Y.; Xiu, J.; Yan, H.; Huang, J.; Wang, L.; Zhang, H.; Liu, Y. The alteration of cell membrane of sulfate reducing bacteria in the presence of Mn(II) and Cd(II). Miner. Eng. 2011, 24, 839–844. [Google Scholar] [CrossRef]
- Guo, J.; Kang, Y.; Feng, Y. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. J. Environ. Manag. 2017, 203, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Oyekola, O.O.; van Hille, R.P.; Harrison, S.T.L. Study of anaerobic lactate metabolism under biosulfidogenic conditions. Water Res. 2009, 43, 3345–3354. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-L.; Wang, J.; Yue, Z.-B.; Tao, W.; Yang, H.-B.; Zhou, Y.-F.; Chen, T.-H. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource. J. Biosci. Bioeng. 2017, 124, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Liamleam, W.; Annachhatre, A.P. Electron donors for biological sulfate reduction. Biotechnol. Adv. 2007, 25, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.F.; Ou, Y.X.; Zhang, D.F.; Zhang, G.G.; Pan, Y.T. Optimization of the culture condition of Bacillus mucilaginous using Agaricus bisporus industrial wastewater by Plackett-Burman combined with Box-Behnken response surface method. AMB Express 2018, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, J.; Gao, Z.; Di, J.; Wang, D.; Guo, X.; Hu, Z.; Gao, X.; Wang, Y. Study on Growth Influencing Factors and Desulfurization Performance of Sulfate Reducing Bacteria Based on the Response Surface Methodology. ACS Omega 2023, 8, 4046–4059. [Google Scholar] [CrossRef]
- Sokolova, E.A. Influence of temperature on development of sulfate-reducing bacteria in the laboratory and field in winter. Contemp. Probl. Ecol. 2010, 3, 631–634. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Kannoorpatti, K.; Padovan, A.; Thennadil, S. Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. Appl. Sci. 2021, 11, 2201. [Google Scholar] [CrossRef]
- Quan, H.E.; Bai, H.; Han, Y.; Kang, Y.; Sun, J. Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria. Front. Chem. Sci. Eng. 2013, 7, 177–184. [Google Scholar] [CrossRef]
- Rodrigues, C.; Nunez-Gomez, D.; Silveira, D.D.; Lapolli, F.R.; Lobo-Recio, M.A. Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW). J. Hazard. Mater. 2019, 375, 330–338. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Miner. Eng. 2016, 92, 63–71. [Google Scholar] [CrossRef]
- Zhou, W.; Colpa, D.I.; Geurkink, B.; Euverink, G.J.W.; Krooneman, J. The impact of carbon to nitrogen ratios and pH on the microbial prevalence and polyhydroxybutyrate production levels using a mixed microbial starter culture. Sci. Total Environ. 2022, 811, 152341. [Google Scholar] [CrossRef]
- Zhang, C.C.; Zhou, C.Z.; Burnap, R.L.; Peng, L. Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. Trends Plant Sci. 2018, 23, 1116–1130. [Google Scholar] [CrossRef]
- Chen, R.R.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Lin, X.G.; Blagodatskaya, E.; Kuzyakov, Y. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 2014, 20, 2356–2367. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 2006, 76, 151–174. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Sun, B.; Shen, M.; Tan, X.; Ding, Y.; Jiang, Z.; Wang, C. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 2015, 268, 290–299. [Google Scholar] [CrossRef]
- Li, Y.; Xia, L.; Huang, R.; Xia, C.; Song, S. Algal biomass from the stable growth phase as a potential biosorbent for Pb(II) removal from water. RSC Adv. 2017, 7, 34600–34608. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.; Li, Q.; Yang, Y.; Xu, R.; Zhang, Y. Immobilization Behavior and Mechanism of Cd2+ by Sulfate-Reducing Bacteria in Anoxic Environments. Water 2024, 16, 1086. https://doi.org/10.3390/w16081086
Liao L, Li Q, Yang Y, Xu R, Zhang Y. Immobilization Behavior and Mechanism of Cd2+ by Sulfate-Reducing Bacteria in Anoxic Environments. Water. 2024; 16(8):1086. https://doi.org/10.3390/w16081086
Chicago/Turabian StyleLiao, Lang, Qian Li, Yongbin Yang, Rui Xu, and Yan Zhang. 2024. "Immobilization Behavior and Mechanism of Cd2+ by Sulfate-Reducing Bacteria in Anoxic Environments" Water 16, no. 8: 1086. https://doi.org/10.3390/w16081086
APA StyleLiao, L., Li, Q., Yang, Y., Xu, R., & Zhang, Y. (2024). Immobilization Behavior and Mechanism of Cd2+ by Sulfate-Reducing Bacteria in Anoxic Environments. Water, 16(8), 1086. https://doi.org/10.3390/w16081086