Geophysical Characterization and Seepage Detection of the Chimney Rock Dam Embankment Near Salina, Oklahoma
Abstract
:1. Introduction
2. Description and Geology of the Study Area
3. Data Acquisition and Processing
3.1. Electrical Resistivity Tomography
3.2. Self-Potential
3.3. Multichannel Analysis of Surface Wave
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, J.M.; Lee, S.; Kang, T. Evaluation of dams and weirs operating for water resource management of the Geum River. Sci. Total Environ. 2014, 478, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of dams in reducing global flood exposure under climate change. Nat. Commun. 2021, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, S.; Pokhrel, Y. Alteration of river flow and flood dynamics by existing and planned hydropower dams in the Amazon River Basin. Water Resour. Res. 2022, 58, e2021WR030555. [Google Scholar] [CrossRef]
- Panthulu, T.V.; Krishnaiah, C.; Shirke, J.M. Detection of seepage paths in earth dams using self-potential and electrical resistivity methods. Eng. Geol. 2001, 59, 281–295. [Google Scholar] [CrossRef]
- Nthaba, B.; Shemang, E.M.; Atekwana, E.A.; Selepeng, A.T. Investigating the earth fill embankment of the lotsane dam for internal defects using time-lapse resistivity imaging and frequency domain electromagnetics. J. Environ. Eng. Geophys. 2020, 25, 325–339. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, Y.A.; Xie, J.; Luo, Y.; Zhang, P.; Liu, H.; Liu, J. Seepage detection in the earth-filled dam from self-potential and electrical resistivity tomography. Eng. Geol. 2022, 306, 106750. [Google Scholar] [CrossRef]
- Wieland, M.; Kirchen, G.F. Long-term dam safety monitoring of Punt dal Gall arch dam in Switzerland. Front. Struct. Civ. Eng. 2012, 6, 76–83. [Google Scholar] [CrossRef]
- Fergason, K.C.; Rucker, M.L.; Panda, B.B. Methods for monitoring land subsidence and earth fissures in the Western USA. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 361–366. [Google Scholar] [CrossRef]
- Mathur, R.K.; Sehra, R.S.; Gupta, S.L. Instrumentation of concrete dams. Int. J. Eng. Appl. Sci. 2017, 4, 257508. [Google Scholar]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam safety: Use of instrumentation in dams. J. Earth Sci. Geotech. Eng. 2021, 11, 145–202. [Google Scholar] [CrossRef]
- Michalis, P.; Sentenac, P. Subsurface condition assessment of critical dam infrastructure with non-invasive geophysical sensing. Environ. Earth Sci. 2021, 80, 556. [Google Scholar] [CrossRef]
- Camarero, P.L.; Moreira, C.A. Geophysical investigation of earth dam using the electrical tomography resistivity technique. REM-Int. Eng. J. 2021, 70, 47–52. [Google Scholar] [CrossRef]
- Cardarelli, E.; Cercato, M.; De Donno, G. Characterization of an earth-filled dam through the combined use of electrical resistivity tomography, P-and SH-wave seismic tomography and surface wave data. J. Appl. Geophys. 2014, 106, 87–95. [Google Scholar] [CrossRef]
- Martínez-Moreno-Moreno, F.J.; Delgado-Ramos, F.; Galindo-Zaldívar, J.; Martín-Rosales, W.; López-Chicano, M.; González-Castillo, L. Identification of leakage and potential areas for internal erosion combining ERT and IP techniques at the Negratín Dam left abutment (Granada, southern Spain). Eng. Geol. 2018, 240, 74–80. [Google Scholar] [CrossRef]
- Gołębiowski, T.; Piwakowski, B.; Ćwiklik, M.; Bojarski, A. Application of combined geophysical methods for the examination of a water dam subsoil. Water 2021, 13, 2982. [Google Scholar] [CrossRef]
- Sanuade, O.; Ismail, A. Geophysical and geochemical pilot study to characterize the dam foundation rock and source of seepage in part of Pensacola Dam in Oklahoma. Water 2023, 15, 4036. [Google Scholar] [CrossRef]
- Sheffer, M.R. Response of the Self-Potential Method to Changing Seepage Conditions in Embankment Dams. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2002. [Google Scholar]
- Tchoumkam, L.A.N.; Chouteau, M.; Giroux, B.; Rivard, P.; Saleh, K.; Côté, A. A case study of self–potential detection of seepage at the junction of two embankment dams. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems Proceedings, Keystone, CO, USA, 11–15 April 2010; Society of Exploration Geophysicists: Houston, TX, USA, 2010; pp. 118–125. [Google Scholar]
- Minsley, B.J.; Burton, B.L.; Ikard, S.; Powers, M.H. Hydrogeophysical investigations at hidden dam, Raymond, California. J. Environ. Eng. Geophys. 2011, 16, 145–164. [Google Scholar] [CrossRef]
- Ikard, S.J.; Rittgers, J.; Revil, A.; Mooney, M.A. Geophysical investigation of seepage beneath an earthen dam. Groundwater 2015, 53, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Sirles, P. Seepage investigation using geophysical techniques at Coursier Lake Dam, British Columbia, Canada. Nondestruct. Eval. Aging Struct. Dams 1995, 2457, 226. [Google Scholar]
- Chouteau, M.; Bouchedda, A.; Rivard, P.; Larget, M.; Hamoni, M.; Côté, A.; Saleh, K. Seepage at les cèdres embankment dam (part 2): Self-potential tomography and additional surveys. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Denver, CO, USA, 17–21 March 2013; Society of Exploration Geophysicists and Environment and Engineering Geophysical Society: Houston, TX, USA, 2013; p. 710. [Google Scholar]
- Ivanov, J.; Miller, R.D.; Lacombe, P.; Johnson, C.D.; Lane, J.W., Jr. Delineating a shallow fault zone and dipping bedrock strata using multichannal analysis of surface waves with a land streamer. Geophysics 2006, 71, A39–A42. [Google Scholar] [CrossRef]
- Rahimi, S.; Moody, T.; Wood, C.; Kouchaki, B.M.; Barry, M.; Tran, K.; King, C. Mapping subsurface conditions and detecting seepage channels for an embankment dam using geophysical methods: A case study of the Kinion Lake Dam. J. Environ. Eng. Geophys. 2019, 24, 373–386. [Google Scholar] [CrossRef]
- Al-Heety, A.J.; Hassouneh, M.; Abdullah, F.M. Application of MASW and ERT methods for geotechnical site characterization: A case study for roads construction and infrastructure assessment in Abu Dhabi, UAE. J. Appl. Geophys. 2021, 193, 104408. [Google Scholar] [CrossRef]
- Nwokebuihe, S.C.; Alotaibi, A.M.; Elkrry, A.; Torgashov, E.V.; Anderson, N.L. Dam seepage investigation of an Earthfill dam in Warren County, Missouri using geophysical methods. AIMS Geosci. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Wagman, D.C. Salina pumped storage project. Power Eng. 2006, 110, 6–7. [Google Scholar]
- Buchanan, G.S. The distribution and correlation of the Mississippian of Oklahoma. AAPG Bull. 1927, 11, 1307–1320. [Google Scholar]
- Campbell, G. New Albany Shale. AAPG Bull. 1946, 57, 829–908. [Google Scholar] [CrossRef]
- Gore, C.E., Jr. The Geology of a Part of the Drainage Basins on Spavinaw, Salina and Spring Creeks. Tulsa Geolological Soc. Dig. 1952, 20, 144–179. [Google Scholar]
- Huffman, G.G. Geology of the south and west flanks of the Ozark uplift, northeast Oklahoma. Okla. Geol. Surv. Bull. 1958, 77, 27–41. [Google Scholar]
- Starke, J.M. Geology of northeastern Cherokee County, Oklahoma. Okla. Geol. Surv. Circ. 1961, 57, 62. [Google Scholar]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Barde-Cabusson, S.; Finizola, A.; Grobbe, N. A practical approach for self-potential data acquisition, processing, and visualization. Interpretation 2021, 9, T123–T143. [Google Scholar] [CrossRef]
- Neducza, B. Stacking of surface waves. Geophysics 2007, 72, V51–V58. [Google Scholar] [CrossRef]
- Naskar, T.; Kumar, J. MATLAB codes for generating dispersion images for ground exploration using different multichannel analysis of surface wave transforms. Geophysics 2022, 87, F15–F24. [Google Scholar] [CrossRef]
- Sjödahl, P.; Dahlin, T.; Zhou, B. 2.5 D resistivity modeling of embankment dams to assess influence from geometry and material properties. Geophysics 2006, 71, G107–G114. [Google Scholar] [CrossRef]
- Norooz, R.; Olsson, P.I.; Dahlin, T.; Günther, T.; Bernstone, C. A geoelectrical pre-study of Älvkarleby test embankment dam: 3D forward modelling and effects of structural constraints on the 3D inversion model of zoned embankment dams. J. Appl. Geophys. 2021, 191, 104355. [Google Scholar] [CrossRef]
- Cho, I.K.; Ha, I.S.; Kim, K.S.; Ahn, H.; Lee, S.; Kang, H.J. 3D effects on 2D resistivity monitoring in earth-fill dams. Near Surf. Geophys. 2014, 12, 73–81. [Google Scholar] [CrossRef]
Survey Method | Acquisition and Survey Parameters |
---|---|
ERT | Electrodes: 72 steel electrodes |
Array type: Wenner–Schlumberger | |
Device: IRIS Instrument Syscal Pro resistivity meter | |
Number of survey lines: 4 | |
Electrode spacing: 7.0 m | |
Profile length: 498 m | |
Self-Potential | Electrodes: Cu/CuSO4 nonpolarized |
Survey type: Fixed-based configuration | |
Device: Fluke 289 true RMS digital voltmeter | |
Number of survey lines: 6 | |
Station spacing: 1.0 m spacing | |
MASW | Number of receivers per shot: 24 geophones |
Receiver interval: 1.5 m | |
Shot interval: 10 m | |
Record length: 1.0 s | |
Stack number: 3 | |
Device: Geometrics Geode | |
Source: 10-kg sledgehammer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetokunbo, P.; Ismail, A.; Mewafy, F.; Sanuade, O. Geophysical Characterization and Seepage Detection of the Chimney Rock Dam Embankment Near Salina, Oklahoma. Water 2024, 16, 1224. https://doi.org/10.3390/w16091224
Adetokunbo P, Ismail A, Mewafy F, Sanuade O. Geophysical Characterization and Seepage Detection of the Chimney Rock Dam Embankment Near Salina, Oklahoma. Water. 2024; 16(9):1224. https://doi.org/10.3390/w16091224
Chicago/Turabian StyleAdetokunbo, Peter, Ahmed Ismail, Farag Mewafy, and Oluseun Sanuade. 2024. "Geophysical Characterization and Seepage Detection of the Chimney Rock Dam Embankment Near Salina, Oklahoma" Water 16, no. 9: 1224. https://doi.org/10.3390/w16091224
APA StyleAdetokunbo, P., Ismail, A., Mewafy, F., & Sanuade, O. (2024). Geophysical Characterization and Seepage Detection of the Chimney Rock Dam Embankment Near Salina, Oklahoma. Water, 16(9), 1224. https://doi.org/10.3390/w16091224