A Distributed Catchment—Scale Evaluation of the Potential of Soil and Water Conservation Interventions to Reduce Storm Flow and Soil Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Debre Mawi Watershed
2.2. Methods
2.2.1. Simulation of Effects of Soil and Water Conservation Interventions
2.2.2. Analysis of Discharge and Soil Loss with PED and GIS Tools
PED Hydrology Model
PED Sediment Model
PED-ArcGIS Model
3. Results and Discussion
3.1. SWC Impact on Runoff and Soil Loss
3.2. Spatial and Temporal Catchment-Scale Discharge and Sediment Concentrations
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fisher, J.A.; Patenaude, G.; Giri, K.; Lewis, K.; Meir, P.; Pinho, P.; Rounsevell, M.D.A.; Williams, M. Understanding the relationships between ecosystem services and poverty alleviation: A conceptual framework. Ecosyst. Serv. 2014, 7, 34–45. [Google Scholar] [CrossRef]
- Dile, Y.T.; Karlberg, L.; Temesgen, M.; Rockström, J. The role of water harvesting to achieve sustainable agricultural intensification and resilience against water related shocks in sub–Saharan Africa. Agric. Ecosyst. Environ. 2013, 181, 69–79. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Jalan, J.; Ravallion, M. Transient poverty in Postreform rural China. J. Comp. Econ. 1998, 26, 338–357. [Google Scholar] [CrossRef]
- Pinho, P.F.; Patenaude, G.; Ometto, J.P.; Meir, P.; Toledo, P.M.; Coelho, A.; Young, C.E.F. Ecosystem protection and poverty alleviation in the tropics: Perspective from a historical evolution of policy–making in the Brazilian Amazon. Ecosyst. Serv. 2014, 8, 97–109. [Google Scholar] [CrossRef]
- Hurni, H.; Berhe, W.A.; Chadhokar, P.; Daniel, D.; Gete, Z.; Grunder, M.; Kassaye, G. Soil and Water Conservation in Ethiopia: Guidelines for Development Agents, 2nd ed.; Centre for Development and Environment (CDE), University of Bern, Bern Open Publishing (BOP): Bern, Switzerland, 2016; p. 134. [Google Scholar]
- Sonneveld, B.G.J.S.; Keyzer, M.A. Land under pressure: Soil conservation concerns and opportunities for Ethiopia. Land Degrad. Dev. 2003, 14, 5–23. [Google Scholar] [CrossRef]
- Wendimu, Y.G.; Moral, T.M. The challenges and prospects of Ethiopian agriculture. Cogent Food Agric. 2021, 7, 1923619. [Google Scholar] [CrossRef]
- Yosef, B.A.; Asmamaw, D.K. Rainwater harvesting: An option for dry land agriculture in arid and semi–arid Ethiopia. Int. J. Water Resour. Environ. Eng. 2015, 7, 17–28. [Google Scholar]
- Ananda, J.; Herath, G. Soil erosion in developing countries: A socio–economic appraisal. J. Environ. Manag. 2003, 68, 343–353. [Google Scholar] [CrossRef]
- Barbier, E. How Environmental Degradation Impoverishes the Poor. Oxf. Res. Encycl. Environ. Sci. 2017. [Google Scholar] [CrossRef]
- Ssekibaala, S.D.; Kasule, T.A. Examination of the poverty-environmental degradation nexus in Sub-Saharan Africa. Reg. Sustain. 2023, 4, 296–308. [Google Scholar] [CrossRef]
- Burka, A.; Biazin, B.; Bewket, W. Drought characterization using different indices, theory of run and trend analysis in bilate river watershed, rift valley of Ethiopia. Front. Environ. Sci. 2023, 11, 1098113. [Google Scholar] [CrossRef]
- Kidane, A. Mortality estimates of the 1984-85 Ethiopian famine. Scand. J. Soc. Med. 1990, 18, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Gatot, I.S.; Duchesne, J.; Forest, F.; Perez, P.; Cudennec, C.; Prasetyo, T.; Karama, S. Rainfall–runoff harvesting for controlling erosion and sustaining upland agriculture development. In Sustaining the Global Farm, Proceedings of the 10th International Soil Conservation Organization Meeting, West Lafayette, IN, USA, 24–29 May 1999; Purdue University, the USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1999; pp. 431–439. [Google Scholar]
- Lanckriet, S.; Derudder, B.; Naudts, J.; Bauer, H.; Deckers, J.; Haile, M.; Nyssen, J. A Political Ecology Perspective of Land Degradation in the North Ethiopian Highlands. Land Degrad. Dev. 2015, 26, 521–530. [Google Scholar] [CrossRef]
- Ilstedt, U.; Tobella, A.B.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef]
- Manda, J.; Tufa, A.H.; Alene, A.; Swai, E.; Muthoni, F.; Bekunda, M. The income and food security impacts of soil and water conservation technologies in Tanzania. Front. Sustain. Food Syst. 2023, 7, 1146678. [Google Scholar] [CrossRef]
- Setsoafia, E.D.; Ma, W.; Renwick, A. Effects of sustainable agricultural practices on farm income and food security in northern Ghana. Agric. Econ. 2022, 10, 9. [Google Scholar] [CrossRef]
- Belayneh, M. Factors affecting the adoption and effectiveness of soil and water conservation measures among small-holder rural farmers: The case of Gumara watershed. Resour. Conserv. Recycl. Adv. 2023, 18, 200159. [Google Scholar] [CrossRef]
- Bojago, E.; Woldemichael Delango, M.W.; Milkias, D. Effects of soil and water conservation practices and landscape position on soil physicochemical properties in Anuwa watershed, Southern Ethiopia. J. Agric. Food Res. 2023, 14, 100705. [Google Scholar] [CrossRef]
- Wudneh, A.; Erkossa, T.; Devi, P. Sediment and nutrient lost by runoff from two watersheds, Digga district in Blue Nile basin, Ethiopia. Afr. J. Environ. Sci. Technol. 2014, 8, 498–510. [Google Scholar]
- Tesfaye, A.; Brouwer, R.; der Zaag, P.V.; Negatu, W. Assessing the costs and benefits of improved land management practices in three watershed areas in Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 20–29. [Google Scholar] [CrossRef]
- Teshome, A.; Rolker, D.; de Graaff, J. Financial viability of soil and water conservation technologies in north western Ethiopian highlands. Appl. Geogr. 2013, 37, 139–149. [Google Scholar] [CrossRef]
- Weldegebriel, L. Soil hydraulic properties dataset in Debre Mawi, Ethiopia. HydroShare 2023. [Google Scholar] [CrossRef]
- Guzman, C.D.; Tilahun, S.A.; Zegeye, A.D.; Steenhuis, T.S. Suspended sediment concentration–discharge relationships in the (sub) humid Ethiopian highlands. Hydrol. Earth Syst. Sci. 2013, 17, 1067–1077. [Google Scholar] [CrossRef]
- Dagnew, D.C.; Guzman, C.D.; Zegeye, A.D.; Tibebu, T.Y.; Getaneh, M.; Abate, S.; Zimale, F.A.; Ayana, E.K.; Tilahun, S.A.; Steenhuis, T.S. Impact of conservation practices on runoff and soil loss in the sub–humid Ethiopian highlands: The Debre Mawi watershed. J. Hydrol. Hydromech. 2015, 63, 210–219. [Google Scholar] [CrossRef]
- Dunne, T.; Black, R.D. An experimental investigation of runoff production in permeable soils. Water Resour. Res. 1970, 6, 478–490. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Guzman, C.D.; Zegeye, A.D.; Dagnew, C.D.; Collick, A.S.; Yitaferu, B.; Steenhuis, T.S. Distributed discharge and sediment concentration predictions in the sub–humid Ethiopian highlands: The Debre Mawi watershed. Hydrol. Process. 2015, 29, 1817–1828. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885−900. [Google Scholar]
- Nigate, F.; Camp, M.V.; Yenehun, A.; Belay, A.S.; Walraevens, K. Recharge–Discharge Relations of Groundwater in Volcanic Terrain of Semi-Humid Tropical Highlands of Ethiopia: The Case of Infranz Springs, in the Upper Blue Nile. Water 2020, 12, 853. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Yilak, D.L.; Schmitter, P.; Zimale, F.A.; Langan, S.; Barron, J.; Parlange, J.-Y.; Steenhuis, T.S. Establishing irrigation potential of a hillside aquifer in the African highlands. Hydrol. Process. 2019, 34, 1741–1753. [Google Scholar] [CrossRef]
- Fenta, H.M.; Aynalem, D.W.; Malmquist, L.; Amare Haileslassie, A.; Tilahun, S.A.; Barron, J.; Adem, A.A.; Adimassu, Z.; Zimale, F.A.; Steenhuis, T.S. A critical analysis of soil (and water) conservation practices in the Ethiopian Highlands: Implications for future research and modeling. Catena 2023, 234, 107539. [Google Scholar] [CrossRef]
- Tebebu, T.Y.; Bayabil, H.K.; Stoof, C.R.; Giri, S.K.; Gessess, A.A.; Tilahun, S.A.; Steenhuis, T.S. Characterization of degraded soils in the humid Ethiopian highlands. Land Degrad. Dev. 2017, 28, 1891–1901. [Google Scholar] [CrossRef]
- Zegeye, A.D.; Fentahun, M.; Alemie, T.C.; Amare, T. A low-cost subsurface drainage technique to enhance gully bank stability in the sub-humid highlands of Ethiopia. J. Hydrol. Hydromech. 2021, 69, 311–318. [Google Scholar] [CrossRef]
- Ritchie, H.; Eisma, J.A.; Parker, A. Sand Dams as a Potential Solution to Rural Water Security in Drylands: Existing Research and Future Opportunities. Front. Water 2021, 3, 651954. [Google Scholar] [CrossRef]
Hydrology Model Parameters | Year | ||||
---|---|---|---|---|---|
2010/2011 | 2012 | 2014 | 2016 | ||
Area fraction (%) | A1 (saturated) | 3 | 10 | 8 | 1 |
A2 (degraded) | 55 | 10 | 8 | 2 | |
A3 (hillside) | 42 | 80 | 84 | 97 | |
Soil maximum storage (mm) | Smax1 | 80 | 80 | 80 | 80 |
Smax2 | 10 | 10 | 10 | 10 | |
Smax3 | 60 | 60 | 60 | 60 | |
Soil initial storage (mm) | Sinit1 | 15 | 15 | 15 | 15 |
Sinit2 | 5 | 5 | 5 | 5 | |
Sinit3 | 10 | 10 | 10 | 10 | |
Aquifers and interflow | Bsmax (mm) | 25 | 25 | 25 | 25 |
BSinit (mm) | 5 | 5 | 5 | 5 | |
Half-life, t½ (day) | 45 | 45 | 45 | 45 | |
t star, τ* (day) | 300 | 300 | 300 | 300 | |
Nash–Sutcliffe efficiency, NSE (-) | 0.59 | 0.51 | 0.89 | 0.82 | |
Erosion model parameters | |||||
Source limit | |||||
as1 | 3 | 3 | 3 | 3 | |
as2 | 3 | 3 | 3 | 3 | |
Transport limit | |||||
at1 | 6 | 6 | 6 | 6 | |
at2 | 14 | 14 | 14 | 14 | |
NSE | 0.50 | 0.59 | 0.76 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemie, T.C.; Buytaert, W.; Tilahun, S.A.; Steenhuis, T.S. A Distributed Catchment—Scale Evaluation of the Potential of Soil and Water Conservation Interventions to Reduce Storm Flow and Soil Loss. Water 2024, 16, 1225. https://doi.org/10.3390/w16091225
Alemie TC, Buytaert W, Tilahun SA, Steenhuis TS. A Distributed Catchment—Scale Evaluation of the Potential of Soil and Water Conservation Interventions to Reduce Storm Flow and Soil Loss. Water. 2024; 16(9):1225. https://doi.org/10.3390/w16091225
Chicago/Turabian StyleAlemie, Tilashwork C., Wouter Buytaert, Seifu A. Tilahun, and Tammo S. Steenhuis. 2024. "A Distributed Catchment—Scale Evaluation of the Potential of Soil and Water Conservation Interventions to Reduce Storm Flow and Soil Loss" Water 16, no. 9: 1225. https://doi.org/10.3390/w16091225
APA StyleAlemie, T. C., Buytaert, W., Tilahun, S. A., & Steenhuis, T. S. (2024). A Distributed Catchment—Scale Evaluation of the Potential of Soil and Water Conservation Interventions to Reduce Storm Flow and Soil Loss. Water, 16(9), 1225. https://doi.org/10.3390/w16091225