A Deformation Analysis Method for Sluice Structure Based on Panel Data
Abstract
:1. Introduction
2. Influencing Factors of Sluice Displacement
2.1. Water Pressure Component
2.2. Temperature Component
2.3. Aging Component
3. An Analysis Method for Sluice Displacement Behavior Based on Panel Data
3.1. Random Coefficient Statistical Model Based on Panel Data
3.2. Maximum Entropy Principle for the Probability Distribution Function of Individual Effect Extreme Values
3.3. The Analysis Method for Nonuniform Deformation State
- (1)
- When the individual effect values meet with , the nonuniform deformation is in a normal state;
- (2)
- When the individual effect values meet with or , the nonuniform deformation is in an abnormal or warning state.
4. Case Study
4.1. General Situation
4.2. Random Coefficient Statistical Model Based on Panel Data
4.2.1. Fitting Results
4.2.2. Identification of Overall Effect Values and Individual Effect Values
4.3. The Probability Distribution Function of Individual Effect Extreme Values
4.4. Determination of Early Warning Indicators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, J.; Li, Z.; Ji, Q.; Lu, W.; Cao, Q.; Ahmed, E. Global Sensitivity Analysis of The Deformation Behavior of Sluice Chamber Structure. Structures 2021, 34, 4682–4693. [Google Scholar] [CrossRef]
- Gu, Z.; Cao, X.; Liu, G.; Lu, W. Optimizing Operation Rules of Sluices in River Networks Based on Knowledge-driven and Data-driven Mechanism. Water Resour. Manag. 2014, 28, 3455–3469. [Google Scholar] [CrossRef]
- Peng, J.; Xie, W.; Wu, Y.; Sun, X.; Zhang, C.; Gu, H.; Zhu, M.; Zheng, S. Prediction for the Sluice Deformation Based on SOA-LSTM-Weighted Markov Model. Water 2023, 15, 3724. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, C.; Guo, G.; Li, L.; Zhao, Y.; Li, H.; Gong, Y. Monitoring Sluice Health in Vibration by Monocular Digital Photography and a Measurement Robot. KSCE J. Civ. Eng. 2019, 23, 2666–2678. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, S.; Fang, H.; Li, M.; Shi, M. Design Method of Polymer Cut-off Wall Density for Earth Dams Based on Multi-Objective Optimization. Structures 2023, 53, 199–204. [Google Scholar] [CrossRef]
- Xu, W.; Niu, X.; Zhu, Y. Deformation Behavior and Damage Evaluation of Fly Ash-Slag Based Geopolymer Concrete Under Cyclic Tension. J. Build. Eng. 2024, 86, 108664. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Liu, G.; Fu, C.; Wang, J. Hydrostatic Seasonal State Model for Monitoring Data Analysis of Concrete Dams. Struct. Infrastruct. Eng. 2015, 11, 1616–1631. [Google Scholar] [CrossRef]
- Gamse, S.; Oberguggenberger, M. Assessment of Long-term Coordinate Time Series Using Hydrostatic-Season-Time Model for Rock-Fill Embankment Dam. Struct. Control Health Monit. 2017, 24, e1859. [Google Scholar] [CrossRef]
- Song, J.; Zhang, S.; Chen, Y. Long-term Deformation Safety Evaluation Method of Concrete Dams Based on The Time-Varying Stability of Concrete Material. Mater. Today Commun. 2023, 36, 106468. [Google Scholar] [CrossRef]
- Salazar, F.; Morán, R.; Toledo, M.; Oñate, E. Data-Based Models for The Prediction of Dam Behaviour: A Review and Some Methodological Considerations. Arch. Comput. Methods Eng. 2017, 24, 1–21. [Google Scholar] [CrossRef]
- Ma, L.; Ma, F.; Cao, W.; Lou, B.; Luo, X.; Li, Q.; Hao, X. A Multi-Strategy Improved Sooty Tern Optimization Algorithm for Concrete Dam Parameter Inversion. Water 2024, 16, 119. [Google Scholar] [CrossRef]
- Cao, M.; Qiao, P.; Ren, Q. Improved Hybrid Wavelet Neural Network Methodology for Time-Varying Behavior Prediction of Engineering Structures. Neural Comput. Appl. 2009, 18, 821–832. [Google Scholar] [CrossRef]
- Mata, J. Interpretation of Concrete Dam Behaviour with Artificial Neural Network and Multiple Linear Regression Models. Eng. Struct. 2011, 33, 903–910. [Google Scholar] [CrossRef]
- Ranković, V.; Grujović, N.; Divac, D.; Milivojević, N. Development of Support Vector Regression Identification Model for Prediction of Dam Structural Behaviour. Struct. Saf. 2014, 48, 33–39. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Liu, Y.; Gu, H.; Xu, B.; Hu, K. Spatial Association-Considered Real-time Risk Rate Assessment of High Arch Dams Using Observed Displacement and Combination Prediction Model. Structures 2023, 53, 1108–1121. [Google Scholar] [CrossRef]
- Lu, T.; Gu, C.; Yuan, D.; Zhang, K.; Shao, C. Deep Learning Model for Displacement Monitoring of Super High Arch Dams Based on Measured Temperature Data. Measurement 2023, 222, 113579. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Chen, H.; Zhang, K.; Shu, X.; Chen, Z.; Hu, Y. A Large-Scale Sensor Missing Data Imputation Framework for Dams Using Deep Learning and Transfer Learning Strategy. Measurement 2021, 178, 109377. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, C.; Hou, M.; Zhou, C.; Ju, Y.; Qi, F. Law and Early Warning of Vertical Sluice Cluster Displacements in Soft Coastal Soil. KSCE J. Civ. Eng. 2023, 27, 698–711. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D.; Xu, Y.; Hou, M.; Wang, Z. Performance Assessment of InSAR-Based Vertical Displacement Monitoring of Sluices in Coastal Soft Soil Area. KSCE J. Civ. Eng. 2022, 26, 371–380. [Google Scholar] [CrossRef]
- Lou, B.; Ma, F.; Luo, X. Abnormality Diagnosis for Deformation Behavior of Pump Station Buildings Based on Nonlinear Dynamics Model. J. Hydraul. Eng. 2023, 54, 486–496. [Google Scholar]
- Shi, Z.; Gu, C.; Qin, D. Variable-Intercept Panel Model for Deformation Zoning of A Super-High Arch Dam. SpringerPlus 2016, 5, 898. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Gu, C.; Yang, M.; Xu, Y.; Su, H. A Novel Model of Dam Displacement Based on Panel Data. Struct. Control Health Monit. 2018, 25, e2037. [Google Scholar] [CrossRef]
- Zhao, E.; Wu, C. Risk Probabilistic Assessment of Ultrahigh Arch Dams Through Regression Panel Modeling on Deformation Behavior. Struct. Control Health Monit. 2021, 28, e2716. [Google Scholar] [CrossRef]
- Cui, X.; Gu, H.; Gu, C.; Cao, W.; Wang, J. A Novel Imputation Model for Missing Concrete Dam Monitoring Data. Mathematics 2023, 11, 2178. [Google Scholar] [CrossRef]
- Hu, J.; Ma, F. Zoned Deformation Prediction Model for Super High Arch Dams Using Hierarchical Clustering and Panel Data. Eng. Comput. 2020, 37, 2999–3021. [Google Scholar] [CrossRef]
- Swamy, P.A. Efficient Inference in a Random Coefficient Regression Model. Econometrica 1970, 38, 311–323. [Google Scholar] [CrossRef]
- Zellner, A. An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias. J. Am. Stat. Assoc. 1962, 57, 348–368. [Google Scholar] [CrossRef]
- Jaynes, E.T. On the Rationale of Maximum Entropy Methods. Proc. IEEE 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, C. Maximum Entropy Method for Operational Loads Feedback Using Concrete Dam Displacement. Entropy 2015, 17, 2958–2972. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, C.; Ruan, H. Safety Monitoring Theory and Its Application of Hydraulic Structures, 3rd ed.; Higher Education Press: Beijing, China, 2003. [Google Scholar]
Random Coefficients Model | Stepwise Regression Method | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Points | R | S | Points | R | S | Points | R | S | Points | R | S |
SP 1-1 | 0.974 | 0.108 | SP 3-2 | 0.980 | 0.185 | SP 1-1 | 0.974 | 0.108 | SP 3-2 | 0.980 | 0.184 |
SP 1-2 | 0.980 | 0.127 | SP 4-1 | 0.984 | 0.199 | SP 1-2 | 0.981 | 0.127 | SP 4-1 | 0.984 | 0.199 |
SP 2-1 | 0.970 | 0.206 | SP 4-2 | 0.986 | 0.178 | SP 2-1 | 0.970 | 0.206 | SP 4-2 | 0.986 | 0.178 |
SP 2-2 | 0.986 | 0.186 | SP 5-1 | 0.980 | 0.128 | SP 2-2 | 0.986 | 0.186 | SP 5-1 | 0.980 | 0.127 |
SP 3-1 | 0.985 | 0.179 | SP 5-2 | 0.979 | 0.128 | SP 3-1 | 0.985 | 0.179 | SP 5-2 | 0.979 | 0.127 |
Random-Coefficients Model | ||||||
---|---|---|---|---|---|---|
R-sq: Overall = 0.986 | Wald chi2(12) = 209.75 | Prob > chi2 = 0.00 | ||||
var | Coefficient | Std. Err. | z | p > z | [95% Conf. Interval] | |
h | −20.63 | 8.85 | −2.33 | 0.020 | −37.97 | −3.29 |
h2 | 1.40 | 0.60 | 2.34 | 0.019 | 0.23 | 2.57 |
h3 | 0.00 | (omitted) | ||||
h4 | 0.00 | (omitted) | ||||
H | 833.66 | 108.05 | 7.72 | 0.000 | 621.89 | 1045.43 |
H2 | −50.00 | 6.49 | −7.71 | 0.000 | −62.71 | −37.29 |
H3 | 0.00 | (omitted) | ||||
H4 | 0.053 | 0.007 | 7.70 | 0.000 | 0.04 | 0.07 |
T1 | 0.035 | 0.004 | 8.02 | 0.000 | 0.03 | 0.04 |
T2 | 0.018 | 0.002 | 7.41 | 0.000 | 0.01 | 0.02 |
T3 | 0.012 | 0.002 | 5.10 | 0.000 | 0.01 | 0.02 |
T4 | 0.021 | 0.002 | 9.04 | 0.000 | 0.02 | 0.03 |
T5 | 0.013 | 0.002 | 5.43 | 0.000 | 0.01 | 0.02 |
T6 | 0.010 | 0.002 | 4.86 | 0.000 | 0.01 | 0.01 |
T7 | 0.015 | 0.002 | 6.64 | 0.000 | 0.01 | 0.02 |
θ | −0.445 | 0.173 | −2.57 | 0.010 | −0.78 | −0.11 |
ln θ | −0.006 | 0.033 | −0.17 | 0.863 | −0.07 | 0.06 |
d | −3.200 | 0.258 | −12.4 | 0 | −3.71 | −2.69 |
Coefficient | SP1-1 | SP1-2 | SP2-1 | SP2-2 | SP3-1 | SP3-2 | SP4-1 | SP4-2 | SP5-1 | SP5-2 |
---|---|---|---|---|---|---|---|---|---|---|
λ0 | −0.59 | −0.22 | −0.02 | −4.43 | −2.50 | −4.73 | −3.75 | −10.58 | 0.65 | 0.86 |
λ1 | 2.90 | 2.71 | −3.35 | −17.96 | −8.88 | −47.72 | −10.45 | −29.75 | 2.34 | 2.67 |
λ2 | 2.51 | 0.71 | −1.87 | −33.56 | −20.50 | −149.51 | −12.97 | −22.07 | −3.61 | −17.26 |
λ3 | 2.47 | 6.11 | 10.05 | −32.01 | −34.38 | −199.97 | −11.73 | −2.24 | −11.71 | −30.1 |
λ4 | −19.89 | −29.66 | −8.64 | −11.62 | −20.49 | −100.20 | −5.08 | 0.99 | −109.19 | −25.23 |
Coefficient | SP1−1 | SP1−2 | SP2−1 | SP2−2 | SP3−1 | SP3−2 | SP4−1 | SP4−2 | SP5−1 | SP5−2 |
---|---|---|---|---|---|---|---|---|---|---|
λ0 | −2.89 | −7.96 | −0.92 | −0.15 | −0.11 | 0.35 | 0.04 | 0.11 | −1.11 | −1.51 |
λ1 | 5.96 | 12.94 | −0.05 | −0.05 | 1.23 | 1.39 | 0.20 | −1.13 | 2.44 | 7.17 |
λ2 | −7.10 | 6.02 | −0.33 | −4.06 | −2.31 | −2.02 | −4.34 | −7.48 | −3.81 | −6.85 |
λ3 | 8.18 | −2.09 | 2.01 | −5.05 | −5.95 | −4.43 | −5.07 | −10.09 | 9.92 | −0.05 |
λ4 | −3.85 | −9.79 | −1.28 | −1.92 | −3.69 | −30.63 | −1.79 | −5.62 | −7.86 | 0.19 |
Measuring Point | SP1-1 | SP1-2 | SP2-1 | SP2-2 | SP3-1 | SP3-2 | SP4-1 | SP4-2 | SP5-1 | SP5-2 |
---|---|---|---|---|---|---|---|---|---|---|
Lower limit/mm | −0.417 | −0.363 | −0.580 | −1.389 | −1.084 | −0.838 | −1.399 | −1.451 | −0.335 | −0.457 |
Upper limit/mm | 1.504 | 1.020 | 1.657 | 0.521 | 0.599 | 0.479 | 0.536 | 0.368 | 1.141 | 1.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Lou, B.; Shen, Z.; Ma, F.; Luo, X.; Ye, W.; Li, X.; Li, D. A Deformation Analysis Method for Sluice Structure Based on Panel Data. Water 2024, 16, 1287. https://doi.org/10.3390/w16091287
Ma Z, Lou B, Shen Z, Ma F, Luo X, Ye W, Li X, Li D. A Deformation Analysis Method for Sluice Structure Based on Panel Data. Water. 2024; 16(9):1287. https://doi.org/10.3390/w16091287
Chicago/Turabian StyleMa, Zekai, Benxing Lou, Zhenzhong Shen, Fuheng Ma, Xiang Luo, Wei Ye, Xing Li, and Dongze Li. 2024. "A Deformation Analysis Method for Sluice Structure Based on Panel Data" Water 16, no. 9: 1287. https://doi.org/10.3390/w16091287
APA StyleMa, Z., Lou, B., Shen, Z., Ma, F., Luo, X., Ye, W., Li, X., & Li, D. (2024). A Deformation Analysis Method for Sluice Structure Based on Panel Data. Water, 16(9), 1287. https://doi.org/10.3390/w16091287