Cladocera and Geochemical Variables from Core Sediments Show Different Conditions of Hungarian Lakes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jurca, T.; Sabadoš, K.; Miljanović, B.; Sipos, S.; Horvatović, M.; Perić, R.; Šćiban, M.; Janković, M. Wetlands as Important Habitats for Biodiversity Conservation: Oxbow Pana Key Study. Zaštita Prir. 2009, 60, 337–347. [Google Scholar]
- Zhai, D.; Xiao, J.; Zhou, L.; Wen, R.; Chang, Z.; Wang, X.; Itoh, S. Holocene East Asian Monsoon Variation Inferred from Species Assemblage and Shell Chemistry of the Ostracodes from Hulun Lake, Inner Mongolia. Quat. Res. 2011, 75, 512–522. [Google Scholar] [CrossRef]
- Long, H.; Lai, Z.; Fuchs, M.; Zhang, J.; Li, Y. Timing of Late Quaternary Palaeolake Evolution in Tengger Desert of Northern China and Its Possible Forcing Mechanisms. Glob. Planet. Chang. 2012, 92–93, 119–129. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; An, Z.; Xu, L.; Zhang, Q. Total Organic Carbon Isotopes: A Novel Proxy of Lake Level from Lake Qinghai in the Qinghai–Tibet Plateau, China. Chem. Geol. 2013, 347, 153–160. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Cheng, H.; Li, Y. Early-Middle Holocene Hydroclimate Changes in the Asian Monsoon Margin of Northwest China Inferred from Huahai Terminal Lake Records. J. Paleolimnol. 2016, 55, 289–302. [Google Scholar] [CrossRef]
- Alves, G.; Velho, L.; Lansac-Tôha, F.; Robertson, B.; Bonecker, C. Effect of Connectivity on the Diversity and Abundance of Cladoceran Assemblages in Lagoons of the Upper Paraná River Floodplain. Acta Limnol. Bras. 2005, 17, 317–327. [Google Scholar]
- Simões, N.R.; Dias, J.D.; Leal, C.M.; Magalhães Braghin, L.S.; Lansac-Tôha, F.A.; Bonecker, C.C. Floods Control the Influence of Environmental Gradients on the Diversity of Zooplankton Communities in a Neotropical Floodplain. Aquat. Sci. 2013, 75, 607–617. [Google Scholar] [CrossRef]
- Velho, L.F.M.; Bini, L.M.; Lansac-Tôha, F.A. Testate Amoeba (Rhizopoda) Diversity in Plankton of the Upper Paraná River Floodplain, Brazil. Hydrobiologia 2004, 523, 103–111. [Google Scholar] [CrossRef]
- Bozelli, R.L.; Thomaz, S.M.; Padial, A.A.; Lopes, P.M.; Bini, L.M. Floods Decrease Zooplankton Beta Diversity and Environmental Heterogeneity in an Amazonian Floodplain System. Hydrobiologia 2015, 753, 233–241. [Google Scholar] [CrossRef]
- Chaparro, G. Effect of Spatial Heterogeneity on Zooplankton Diversity: A Multi-Scale Habitat Approximation in a Floodplain Lake. River Res. Appl. 2015, 31, 85–97. [Google Scholar] [CrossRef]
- Chaparro, G.; Fontanarrosa, M.S.; O’Farrell, I. Colonization and Succession of Zooplankton After a Drought: Influence of Hydrology and Free-Floating Plant Dynamics in a Floodplain Lake. Wetlands 2016, 36, 85–100. [Google Scholar] [CrossRef]
- Van Onsem, S.; De Backer, S.; Triest, L. Microhabitat–Zooplankton Relationship in Extensive Macrophyte Vegetations of Eutrophic Clear-Water Ponds. Hydrobiologia 2010, 656, 67–81. [Google Scholar] [CrossRef]
- Birks, H.J.B.; Mackay, A.; Battarbee, R.W.; Birks, J.; Oldfield, F. Quantitative Palaeoenvironmental Reconstructions from Holocene Biological Data. In Global Change in the Holocene; Routledge: London, UK, 2003; pp. 107–123. ISBN 978-0-340-76223-3. [Google Scholar]
- Kattel, G.R.; Battarbee, R.W.; Mackay, A.; Birks, H.J.B. Are Cladoceran Fossils in Lake Sediment Samples a Biased Reflection of the Communities from Which They Are Derived? J. Paleolimnol. 2006, 38, 157–181. [Google Scholar] [CrossRef]
- Gregory-Eaves, I.; Beisner, B.E. Palaeolimnological Insights for Biodiversity Science: An Emerging Field. Freshw. Biol. 2011, 56, 2653–2661. [Google Scholar] [CrossRef]
- Korhola, A.; Rautio, M. Cladocera and Other Branchiopod Crustaceans. Dev. Paleoenviron. Res. 2001, 4, 5–41. [Google Scholar] [CrossRef] [PubMed]
- Frey, D. Cladocera Analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1986; pp. 667–698. [Google Scholar]
- Jeziorski, A.; Yan, N.D.; Paterson, A.M.; DeSellas, A.M.; Turner, M.A.; Jeffries, D.S.; Smol, J.P. The Widespread Threat of Calcium Decline in Fresh Waters. Science 2008, 322, 1374–1377. [Google Scholar] [CrossRef]
- Visconti, A.; Manca, M.; De Bernardi, R. Eutrophication-Like Response to Climate Warming: An Analysis of Lago Maggiore (N. Italy) Zooplankton in Contrasting Years. J. Limnol. 2008, 67, 87. [Google Scholar] [CrossRef]
- Nevalainen, L.; Luoto, T.P. Temperature Sensitivity of Gamogenesis in Littoral Cladocerans and Its Ecological Implications. J. Limnol. 2010, 69, 120. [Google Scholar] [CrossRef]
- Korponai, J.; Gyulai, I.; Braun, M.; Kövér, C.; Papp, I.; Forró, L. Reconstruction of Flood Events in an Oxbow Lake (Marótzugi-Holt-Tisza, NE Hungary) by Using Subfossil Cladocerans Remains and Sediments. Adv. Oceanogr. Limnol. 2016, 1. [Google Scholar] [CrossRef]
- Kurek, J.; Korosi, J.B.; Jeziorski, A.; Smol, J.P. Establishing Reliable Minimum Count Sizes for Cladoceran Subfossils Sampled from Lake Sediments. J. Paleolimnol. 2010, 44, 603–612. [Google Scholar] [CrossRef]
- Lászlóffy, W. A Tisza (The Tisza River); Akadémia Press: Budapest, Hungary, 1982; pp. 27–55. ISBN 963 05 2681 6. [Google Scholar]
- Pálfai, I. Magyarország Holtágai; Közlekedési és Vízügyi Minisztérium: Budapest, Hungary, 2001; ISBN 2399958516977. [Google Scholar]
- Glew, J.R. Miniature Gravity Corer for Recovering Short Sediment Cores. J. Paleolimnol. 1991, 5, 285–287. [Google Scholar] [CrossRef]
- Frey, D.G. The Taxonomy and Biogeography of the Cladocera. Hydrobiologia 1987, 145, 5–17. [Google Scholar] [CrossRef]
- Gulyás, P.D.; Felföldi, L.D.; Megyeri, J.D. Small Adverb of Cladocera; Water Documentation and Information Office: Budapest, Hungary, 1974. [Google Scholar]
- Szeroczyńska, K.; Sarmaja-Korjonen, K. Atlas of Subfossil Cladocera from Central and Northern Europe; Friends of the Lower Vistula Society: Swiecie, Poland, 2007; Volume 84. [Google Scholar]
- Błędzki, L.; Rybak, J. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-29870-2. [Google Scholar] [CrossRef]
- Dean, W.E. Determination of Carbonate and Organic Matter in Calcareous Sediments and Sedimentary Rocks by Loss on Ignition; Comparison with Other Methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- Heiri, O.; Lotter, A.; Lemcke, G. Loss on Ignition as a Method for Estimating Organic and Carbonate Content in Sediments: Reproducibility and Comparability of Results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Sajtos, Z.; Herman, P.; Harangi, S.; Baranyai, E. Elemental Analysis of Hungarian Honey Samples and Bee Products by MP-AES Method. Microchem. J. 2019, 149, 103968. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, M.; Friendly, R.; Legendre, P.; McGlinn, D.; Minchín, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H. Community Ecology Package: ‘Vegan’ Package; R Development Core Team: Vienna, Austria, 2017. [Google Scholar]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Jost, L. Partitioning Diversity into Independent Alpha and Beta Components. Ecology 2007, 88, 2427–2439. [Google Scholar] [CrossRef] [PubMed]
- Telford, H.J.B.; Birks, H. A Novel Method for Assessing the Statistical Significance of Quantitative Reconstructions Inferred from Biotic Assemblages. Quat. Sci. Rev. 2011, 30, 1272–1278. [Google Scholar] [CrossRef]
- Legendre, P. Interpreting the Replacement and Richness Difference Components of Beta Diversity. Glob. Ecol. Biogeogr. 2014, 23, 1324–1334. [Google Scholar] [CrossRef]
- Podani, J.; Schmera, D. A New Conceptual and Methodological Framework for Exploring and Explaining Pattern in Presence-Absence Data. Oikos 2011, 120, 1625–1638. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Michael, R.; Sharma, B.K. Indian Cladocera (Crustacea Branchiopoda Cladocera); Fauna of India and Adjecent Countries; Zoological Survey of India: Calcutta, India, 1988.
- Lansac-Tôha, F.; Bonecker, C.; Velho, L.; Simões, N.; Dias, J.; Alves, G.; Takahashi, E. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: Interannual variation from long-term studies. Braz. J. Biol. = Rev. Bras. De Biol. 2009, 69, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.A.; Pandit, A.K. Some Crustacean Zooplankton of Wular Lake in Kashmir Himalaya. Afr. J. Environ. Sci. Technol. 2013, 7, 329–335. [Google Scholar]
- Vijverberg, J.; Boersma, M. Long-term Dynamics of Small-bodied and Large-bodied Cladocerans During the Eutrophication of a Shallow Reservoir, with Special Attention for Chydorus sphaericus. Hydrobiologia 1997, 360, 233–242. [Google Scholar] [CrossRef]
- Bernardi, R.; Giussani, G.; Manca, M. Cladocera: Predators and Prey. Hydrobiologia 1987, 145, 225–243. [Google Scholar] [CrossRef]
- Bernardi, R.; Giussani, G.; Manca, M.; Ruggiu, D. Trophic Status and the Pelagic System in Lago Maggiore. Hydrobiologia 1990, 191, 1–8. [Google Scholar] [CrossRef]
- Babka, B.; Futó, I.; Szabó, S. Seasonal Evaporation Cycle in Oxbow Lakes Formed Along the Tisza River in Hungary for Flood Control. Hydrol. Process. 2018, 32, 2009–2019. [Google Scholar] [CrossRef]
- Borics, G.; Ács, É.; Boda, P.; Boros, E.; Erős, T.; Grigorszky, I.; Kiss, K.T.; Lengyel, S.; Reskóné, N.M.; Somogyi, B.; et al. Water Bodies in Hungary—An Overview of Their Management and Present State. Hung. J. Hydrol. 2016, 96, 57–67. [Google Scholar]
- Dias, J.; Simões, N.; Meerhoff, M.; Lansac-Tôha, F.; Velho, L.; Bonecker, C. Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain. Hydrobiologia 2016, 781, 109–125. [Google Scholar] [CrossRef]
- Dias, J.; Miracle, M.; Bonecker, C. Do water levels control zooplankton secondary production in Neotropical floodplain lakes? Fundam. Appl. Limnol./Arch. Für Hydrobiol. 2017, 109, 49–62. [Google Scholar] [CrossRef]
Data Set | R | F | p | |
---|---|---|---|---|
Cladocerans | PERMDISP | 1.4 | 0.268 | |
PERMANOVA | 0.7145 | 37.529 | 0.001 | |
Environmental variables | PERMDISP | 0.225 | 0.809 | |
PERMANOVA | 0.591 | 21.639 | 0.001 |
Null Model | Depth Conditioned | Site Conditioned | ||||
---|---|---|---|---|---|---|
Inertia | Proportion | Inertia | Proportion | Inertia | Proportion | |
Total | 0.1697 | 1 | 0.1697 | 1 | 0.1697 | 1 |
Conditional | 0.0056 | 0.0329 | 0.0487 | 0.2872 | ||
Constrained | 0.0728 | 0.4288 | 0.0299 | 0.1760 | ||
Unconstrained | 0.0969 | 0.5712 | 0.1342 | 0.7911 | 0.1209 | 0.7128 |
F | 4.053 | 3.2261 | 0 | |||
p | 0.001 | 0.001 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyulai, I.; Korponai, J.; Wamugi, S.M.A.; Jakab, J.; Kawu, U.A.; Soltész, A.G.; Karches, T.; Tumurtogoo, U. Cladocera and Geochemical Variables from Core Sediments Show Different Conditions of Hungarian Lakes. Water 2024, 16, 1310. https://doi.org/10.3390/w16091310
Gyulai I, Korponai J, Wamugi SMA, Jakab J, Kawu UA, Soltész AG, Karches T, Tumurtogoo U. Cladocera and Geochemical Variables from Core Sediments Show Different Conditions of Hungarian Lakes. Water. 2024; 16(9):1310. https://doi.org/10.3390/w16091310
Chicago/Turabian StyleGyulai, István, János Korponai, Sheila Mumbi A. Wamugi, Jázmin Jakab, Umar Abba Kawu, Andor G. Soltész, Tamás Karches, and Uyanga Tumurtogoo. 2024. "Cladocera and Geochemical Variables from Core Sediments Show Different Conditions of Hungarian Lakes" Water 16, no. 9: 1310. https://doi.org/10.3390/w16091310
APA StyleGyulai, I., Korponai, J., Wamugi, S. M. A., Jakab, J., Kawu, U. A., Soltész, A. G., Karches, T., & Tumurtogoo, U. (2024). Cladocera and Geochemical Variables from Core Sediments Show Different Conditions of Hungarian Lakes. Water, 16(9), 1310. https://doi.org/10.3390/w16091310