Membrane Foulant Removal by Ozone-Biocarrier Pretreatment Technology for Industrial Wastewater Reclamation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment Setup for Lab Testing System
2.2. Equipment Setup for Pilot Testing System
2.3. Water Quality Analysis
2.4. Excitation–Emission Matrix (EEM) Fluorescence Spectroscopy
2.5. Assimilable Organic Carbon (AOC)
2.6. Characterization of Molecular Weight Distribution
2.7. Lab Testing of Pretreatment Processes for UF Membrane Filtration
2.8. Microbial Analysis
3. Results and Discussion
3.1. Lab Evaluation of the Pretreatment Process and UF Membrane Filtration
3.2. Organic Component Characterization
3.3. Analysis of Microbial Community Diversity
3.4. Pilot Testing of the Combined Ozonation and Porous Biocarrier Pretreatment Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davey, J.; Schäfer, A.I. Ultrafiltration to Supply Drinking Water in International Development: A Review of Opportunities. Appropriate Technologies for Environmental Protection in the Developing World: Selected Papers from ERTEP 2007, Ghana, Africa, 17–19 July 2007; Springer: Dordrecht, The Netherlands, 2009; pp. 1–359. [Google Scholar]
- Peiris, R.H.; Hallé, C.; Budman, H.; Moresoli, C.; Peldszus, S.; Huck, P.M.; Legge, R.L. Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Res. 2010, 44, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Shon, H.K.; Vigneswaran, S.; Snyder, S.A. Effluent organic matter (EfOM) in wastewater: Constituents, effects, and treatment. Crit. Rev. Environ. Sci. Technol. 2006, 36, 327–374. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Yuan, X.; Li, P.; Yu, Y.; Yang, W.; Zhao, S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. Membrane 2023, 13, 77. [Google Scholar] [CrossRef]
- Jeong, S.; Rice, S.A.; Vigneswaran, S. Long-term effect on membrane fouling in a new membrane bioreactor as a pretreatment to seawater desalination. Bioresour. Technol. 2014, 165, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.K.; Subhi, N.; Antony, A.; Khan, S.J.; Murphy, K.R.; Leslie, G.L.; Chen, V.; Stuetz, R.M.; Le-Clech, P. Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterization techniques. J. Membr. Sci. 2011, 382, 50–59. [Google Scholar] [CrossRef]
- Zheng, X.; Ernst, M.; Huck, P.M.; Jekel, M. Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater. Water Res. 2010, 44, 5212–5221. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.; Wan, W.M.; Choi, Y. Comparison of membrane permeability and a fouling mechanism by pre-ozonation followed by membrane filtration and residual ozone in membrane cells. Desalination 2005, 178, 287–294. [Google Scholar] [CrossRef]
- Barry, M.C.; Hristovski, K.; Westerhoff, P. Membrane fouling by vesicles and prevention through ozonation. Environ. Sci. Technol. 2014, 48, 7349–7356. [Google Scholar] [CrossRef] [PubMed]
- Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng. 2006, 28, 353–414. [Google Scholar] [CrossRef]
- Chow, C.W.K.; Fabris, R.; VanLeeuwen, J.; Wang, D.; Drikas, M. Assessing natural organic matter treatability using high performance size exclusion chromatography. Environ. Sci. Technol. 2008, 42, 6683–6689. [Google Scholar] [CrossRef] [PubMed]
- Hamid, K.A.; Sanciolo, P.; Gary, S.; Duke, M.; Muthukumaran, S. Comparison of the effects of ozone, biological activated carbon (BAC) filtration and combined ozone-BAC pre-treatments on the microfiltration of secondary effluent. Sep. Purif. Technol. 2019, 215, 308–316. [Google Scholar] [CrossRef]
- Hudson, N.; Baker, A.; Ward, D.; Reynolds, D.M.; Brunsdon, C.; Carliell-Marquet, C.; Browning, S. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Sci. Total Environ. 2008, 391, 149–158. [Google Scholar] [CrossRef]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qu, F.; Chang, H.; Shao, S.; Zou, X.; Li, G.; Liang, H. Understanding ultrafiltration membrane fouling by soluble microbial product and effluent organic matter using fluorescence excitation-emission matrix coupled with parallel factor analysis. Int. Biodeterior. Biodegrad. 2015, 102, 56–63. [Google Scholar] [CrossRef]
- Meng, L.; Xi, J.; Yeung, M. Degradation of extracellular polymeric substances (EPS) extracted from activated sludge by low-concentration ozonation. Chemosphere 2016, 147, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterization of aquatic humic and non-humic matter with size-exclusion chromatography—Organic carbon detection—Organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef]
- Hammes, F.; Salhi, E.; Koster, O.; Kaiser, H.P.; Egli, T.; Gunten, U.G. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Res. 2006, 40, 2275–2286. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, J.H.; Liu, H.C.; Liu, Z.P. Dokdonella immobilis sp. nov., isolated from a batch reactor for the treatment of triphenylmethane dye effluent. Int. J. Syst. Evol. Microbiol. 2013, 63, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Kirchman, D.L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 2002, 39, 91–100. [Google Scholar] [CrossRef]
- McBride, M.J.; Xie, G.; Martens, E.C.; Lapidus, A.; Henrissat, B.; Rhodes, R.G.; Goltsman, E.; Wang, W.; Xu, J.; Hunnicutt, D.W.; et al. Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl. Environ. Microbiol. 2009, 75, 6864–6875. [Google Scholar] [CrossRef]
- Sack, E.L.W.; van der Wielen, P.W.J.J.; van der Kooij, D. Flavobacterium johnsoniae as a model organism for characterizing biopolymer utilization in oligotrophic freshwater environments. Appl. Environ. Microbiol. 2011, 77, 6931–6938. [Google Scholar] [CrossRef]
- Wang, H.; Park, M.; Liang, H.; Wu, S.; Lopez, I.J.; Ji, W.; Li, G.; Snyder, S.A. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation. Water Res. 2017, 125, 42–51. [Google Scholar] [CrossRef] [PubMed]
Process | Secondary Effluent | Porous Biocarrier Reactor Effluent | Ozonation + Porous Biocarrier Reactor Effluent |
---|---|---|---|
COD (mg/L) | 46.45 ± 17.95 | 43.85 ± 18.57 | 41.41 ± 16.39 |
DOC (mg/L) | 21.44 ± 10.90 | 18.83 ± 7.86 | 17.67 ± 6.70 |
BOD5 (mg/L) | 7.54 ± 1.99 | n.a. * | n.a. * |
NH4+-N(mg/L) | 32.84 ± 17.53 | 14.83 ± 9.68 | 14.45 ± 9.89 |
NO3−-N(mg/L) | 122.47 ± 32.26 | 139.38 ± 27.39 | 138.69 ± 26.91 |
∆NH4+/∆NO3− | n.a. * | 0.93 | 0.98 |
Ozone Dose (mg O3/mg TOC) | |||
---|---|---|---|
Fluorescence Intensity Removal (%) | 0.2 | 0.5 | 1 |
API | 8.3 | 29 | 71 |
APII | 28 | 55 | 78 |
FA | 30 | 52 | 69 |
SMP | 33 | 67 | 82 |
HA | 35 | 63 | 79 |
Secondary Effluent | Porous Biocarrier Reactor Effluent | Ozonation + Porous Biocarrier Reactor Effluent | ||
---|---|---|---|---|
Concentration of DOC, in molecular weight | >10,000 Da (μg-C/L) | 0.285 | 0.561 | 0.085 |
500–1200 Da (μg-C/L) | 6.74 | 7.62 | 7.67 | |
<350 Da (μg-C/L) | 1.90 | 3.35 | 2.24 | |
Protein-like substance removal (%) | n.a. * | 3.8 | 32.0 | |
Biopolymer removal (%) | n.a. * | −96.9 | 70.2 | |
AOC (μg/L) | 1196.11 ± 186.93 | 2512.36 ± 105.97 | 253.82 ± 31.15 |
Process | Wastewater Effluent | Ozone | Porous Biocarrier | Ozone + Porous Biocarrier | |
---|---|---|---|---|---|
DOC (mg/L) | 9.5 | 9.7 | 8.2 | 6.8 | |
BOD5 (mg/L) | 8.2 | 10.8 | 4.1 | 4.0 | |
Biopolymer (mg/L) | 0.87 | 0.89 | n.a. * | 0.52 | |
Concentration of DOC, in molecular weight | >10,000 Da (μg-C/L) | 0.87 | 0.89 | n.a. * | 0.52 |
500–1200 Da (μg-C/L) | 6.49 | 6.64 | n.a. * | 5.01 | |
<350 Da (μg-C/L) | 2.20 | 2.13 | n.a. * | 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.-T.; Chiu, S.-Y.; Lee, C.-C.; Tai, Y.-L.; Lin, G.-Y.; Lai, C.-H.; Chen, P.-Y. Membrane Foulant Removal by Ozone-Biocarrier Pretreatment Technology for Industrial Wastewater Reclamation. Water 2025, 17, 272. https://doi.org/10.3390/w17020272
Chang T-T, Chiu S-Y, Lee C-C, Tai Y-L, Lin G-Y, Lai C-H, Chen P-Y. Membrane Foulant Removal by Ozone-Biocarrier Pretreatment Technology for Industrial Wastewater Reclamation. Water. 2025; 17(2):272. https://doi.org/10.3390/w17020272
Chicago/Turabian StyleChang, Ting-Ting, Sheng-Yi Chiu, Chun-Chi Lee, Yuan-Liang Tai, Guan-You Lin, Chun-Hsi Lai, and Po-Yu Chen. 2025. "Membrane Foulant Removal by Ozone-Biocarrier Pretreatment Technology for Industrial Wastewater Reclamation" Water 17, no. 2: 272. https://doi.org/10.3390/w17020272
APA StyleChang, T.-T., Chiu, S.-Y., Lee, C.-C., Tai, Y.-L., Lin, G.-Y., Lai, C.-H., & Chen, P.-Y. (2025). Membrane Foulant Removal by Ozone-Biocarrier Pretreatment Technology for Industrial Wastewater Reclamation. Water, 17(2), 272. https://doi.org/10.3390/w17020272