Impact of Extreme Weather Events on the Surface Energy Balance of the Low-Elevation Svalbard Glacier Aldegondabreen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Research Background
2.2. Heatwave Definition
2.3. Model Overview
2.4. Source Data
2.4.1. In Situ Weather Data
2.4.2. Eddy Covariance Measurements
2.4.3. Climate Normals
2.4.4. Glaciological Mass Balance
2.4.5. Proglacial Runoff
3. SEB Modeling and Assessment
3.1. Comparison Between the Eddy Covariance and Bulk Aerodynamic Methods
3.2. Evaluation of Modeled Ice Melt Rates
4. Results and Discussion
4.1. Impact of Heatwaves on the Energy Fluxes
4.2. Extreme Melt Events
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ba | Annual mass balance |
AWS | Automated weather station |
HW | Heatwave |
RMSE | Root mean square error |
w.e. | Water equivalent |
SEB | Surface energy balance |
Appendix A
References
- Isaksen, K.; Nordli, Ø.; Ivanov, B.; Køltzow, M.A.; Aaboe, S.; Gjelten, H.M.; Mezghani, A.; Eastwood, S.; Førland, E.; Benestad, R.E.; et al. Exceptional warming over the Barents area. Sci. Rep. 2022, 12, 9371. [Google Scholar] [CrossRef] [PubMed]
- Schuler, T.V.; Kohler, J.; Elagina, N.; Hagen, J.O.M.; Hodson, A.J.; Jania, J.A.; Kääb, A.M.; Luks, B.; Małecki, J.; Moholdt, G.; et al. Reconciling Svalbard glacier mass balance. Front. Earth Sci. 2020, 8, 156. [Google Scholar] [CrossRef]
- van Pelt, W.J.J.; Schuler, T.V.; Pohjola, V.A.; Pettersson, R. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. J. Glaciol. 2021, 67, 485–499. [Google Scholar] [CrossRef]
- Aas, K.S.; Dunse, T.; Collier, E.; Schuler, T.V.; Berntsen, T.K.; Kohler, J.; Luks, B. The climatic mass balance of Svalbard glaciers: A 10-year simulation with a coupled atmosphere–glacier mass balance model. Cryosphere 2016, 10, 1089–1104. [Google Scholar] [CrossRef]
- Zou, X.; Ding, M.; Sun, W.; Yang, D.; Liu, W.; Huai, B.; Jin, S.; Xiao, C. The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014. Polar Res. 2020, 40. [Google Scholar] [CrossRef]
- Prokhorova, U.; Terekhov, A.; Ivanov, B.; Demidov, V. Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arct. Antarct. Alp. Res. 2023, 55, 2190057. [Google Scholar] [CrossRef]
- Geyman, E.C.; van Pelt, W.J.J.; Maloof, A.C.; Aas, H.F.; Kohler, J. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature 2022, 601, 374–379. [Google Scholar] [CrossRef]
- Karner, F.; Obleitner, F.; Krismer, T.; Kohler, J.; Greuell, W. A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard. J. Geophys. Res. Atmos. 2013, 118, 3986–4000. [Google Scholar] [CrossRef]
- Shestakova, A.A.; Chechin, D.G.; Lüpkes, C.; Hartmann, J.; Maturilli, M. The foehn effect during easterly flow over Svalbard. Atmos. Chem. Phys. 2022, 22, 1529–1548. [Google Scholar] [CrossRef]
- Ventura, S.; Miró, J.R.; Peña, J.C.; Villalba, G. Analysis of synoptic weather patterns of heatwave events. Clim. Dyn. 2023, 61, 4679–4702. [Google Scholar] [CrossRef]
- Hughes, P.D. Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geogr. Ann. A Phys. Geogr. 2008, 90, 259–267. [Google Scholar] [CrossRef]
- Colucci, R.R.; Giorgi, F.; Torma, C. Unprecedented heat wave in December 2015 and potential for winter glacier ablation in the eastern Alps. Sci. Rep. 2017, 7, 7090. [Google Scholar] [CrossRef] [PubMed]
- Cremona, A.; Huss, M.; Landmann, J.M.; Borner, J.; Farinotti, D. European heat waves 2022: Contribution to extreme glacier melt in Switzerland inferred from automated ablation readings. Cryosphere 2023, 17, 1895–1912. [Google Scholar] [CrossRef]
- Chen, W.; Yao, T.; Zhang, G.; Woolway, R.I.; Yang, W.; Xu, F.; Zhou, T. Glacier surface heatwaves over the Tibetan Plateau. Geophys. Res. Lett. 2023, 50, e2022GL101115. [Google Scholar] [CrossRef]
- Fisher, J.A.; Kochtitzky, W.H.; Edwards, B.R.; Irving, W.R.; Russell, K. Heat Wave Causes Major Melting Event in 2017 at 3 Glaciers Along the Lower Iskut River, British Columbia, Canada. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2018; C33D-1593; Available online: https://ui.adsabs.harvard.edu/abs/2018AGUFM.C33D1593F/abstract (accessed on 15 January 2025).
- Pelto, M.S.; Dryak, M.; Pelto, J.; Matthews, T.; Perry, L.B. Contribution of Glacier Runoff during Heat Waves in the Nooksack River Basin USA. Water 2022, 14, 1145. [Google Scholar] [CrossRef]
- Summer Melting in Svalbard. Available online: https://earthobservatory.nasa.gov/images/150165/summer-melting-in-svalbard (accessed on 21 December 2024).
- Temperature 2022. Available online: https://climate.copernicus.eu/esotc/2022/arctic-temperature (accessed on 21 December 2024).
- Noël, B.; Jakobs, C.L.; Van Pelt, W.J.J.; Lhermitte, S.; Wouters, B.; Kohler, J.; Hagen, J.O.; Luks, B.; Reijmer, C.H.; van de Berg, W.J.; et al. Low elevation of Svalbard glaciers drives high mass loss variability. Nat. Commun. 2020, 11, 4597. [Google Scholar] [CrossRef]
- Terekhov, A.; Prokhorova, U.; Verkulich, S.; Demidov, V.; Sidorova, O.; Anisimov, M.; Romashova, K. Two decades of mass-balance observations on Aldegondabreen, Spitsbergen: Interannual variability and sensitivity to climate change. Ann. Glaciol. 2023, 64, 225–235. [Google Scholar] [CrossRef]
- England, M.R.; Eisenman, I.; Lutsko, N.J.; Wagner, T.J.W. The recent emergence of Arctic Amplification. Geophys. Res. Lett. 2021, 48, e2021GL094086. [Google Scholar] [CrossRef]
- Robinson, P.J. On the Definition of a Heat Wave. J. Appl. Meteorol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Hu, L.; Huang, G. The changes of high-temperature extremes and their links with atmospheric circulation over the Northern Hemisphere. Theor. Appl. Climatol. 2020, 139, 261–274. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.J.; Kim, J.H.; Hayashi, M.; Kim, M.K. East Asian heatwaves driven by Arctic-Siberian warming. Sci. Rep. 2022, 12, 18025. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Jun, S.Y.; Lee, M.I.; Kug, J.S. Significant relationship between Arctic warming and East Asia hot summers. Int. J. Climatol. 2022, 42, 9530–9538. [Google Scholar] [CrossRef]
- Wheler, B.A.; Flowers, G.E. Glacier subsurface heat-flux characterizations for energy-balance modelling in the Donjek Range, southwest Yukon, Canada. J. Glaciol. 2017, 57, 121–133. [Google Scholar] [CrossRef]
- Böhner, J.; Antonić, O. Land-surface parameters specific to topo-climatology. Dev. Soil Sci. 2009, 33, 195–226. [Google Scholar] [CrossRef]
- Naegeli, K.; Damm, A.; Huss, M.; Wulf, H.; Schaepman, M.; Hoelzle, M. Cross-comparison of albedo products for glacier surfaces derived from airborne and satellite (Sentinel-2 and Landsat 8) optical data. J. Remote Sens. 2017, 9, 110. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; De Bruin, H.A.R. Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteorol. Clim. 1988, 27, 689–704. [Google Scholar] [CrossRef]
- König-Langlo, G.; Augstein, E. Parameterization of the downward long-wave radiation at the Earth’s surface in polar regions. Meteorol. Z. 1994, 3, 343–347. [Google Scholar] [CrossRef]
- Klok, E.L.; Oerlemans, J. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. J. Glaciol. 2002, 48, 505–518. [Google Scholar] [CrossRef]
- Romashova, K.V.; Chernov, R.A.; Vasilevich, I.I. Study of the glacial flow of rivers in the Grønfjord bay basin (Western Svalbard). Arct. Antarct. Res. 2019, 65, 34–45. [Google Scholar] [CrossRef]
- Smeets, C.J.; Broeke, M.R. Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet. Bound. Lay. Meteorol. 2008, 128, 315–338. [Google Scholar] [CrossRef]
- Pellicciotti, F.; Carenzo, M.; Helbing, J.; Rimkus, S.; Burlando, P. On the role of subsurface heat conduction in glacier energy-balance modelling. Ann. Glaciol. 2009, 50, 16–24. [Google Scholar] [CrossRef]
- Covi, F.; Hock, R.; Reijmer, C.H. Challenges in modeling the energy balance and melt in the percolation zone of the Greenland ice sheet. J. Glaciol. 2023, 69, 164–178. [Google Scholar] [CrossRef]
- Hill, T.; Dow, C.F.; Bash, E.A.; Copland, L. Application of an improved surface energy balance model to two large valley glaciers in the St. Elias Mountains, Yukon. J. Glaciol. 2021, 67, 297–312. [Google Scholar] [CrossRef]
- Klug, C.; Bollmann, E.; Galos, S.P.; Nicholson, L.; Prinz, R.; Rieg, L.; Sailer, R.; Stötter, J.; Kaser, G. Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria. Cryosphere 2018, 12, 833–849. [Google Scholar] [CrossRef]
- Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Smith, T.; Smith, M.W.; Chambers, J.R.; Sailer, R.; Nicholson, L.; Mertes, J.; Quincey, D.J.; Carrivick, J.L.; Stiperski, I. A scale-dependent model to represent changing aerodynamic roughness of ablating glacier ice based on repeat topographic surveys. J. Glaciol. 2020, 66, 950–964. [Google Scholar] [CrossRef]
- Arnold, N.S.; Rees, W.G.; Hodson, A.J.; Kohler, J. Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Geophys. Res. Earth Surf. 2006, 111, F02011. [Google Scholar] [CrossRef]
- Budescu, D.V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 1993, 114, 542–551. [Google Scholar] [CrossRef]
- Azen, R.; Budescu, D.V. The Dominance Analysis Approach for Comparing Predictors in Multiple Regression. Psychol. Methods 2003, 8, 129–148. [Google Scholar] [CrossRef]
- Dominance-analysis. Available online: https://github.com/dominance-analysis/dominance-analysis (accessed on 23 December 2024).
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 3–32. [Google Scholar] [CrossRef]
Mean Flux; W m−2 | Ratio of Positive Components; % | |
---|---|---|
Shortwave balance | 65.4 | 68% |
Sensible heat flux | 25.9 | 27% |
Latent heat flux | 4.4 | 5% |
Conductive heat flux | −4.9 | — |
Longwave balance | −12.2 | — |
Heat available for melt | 78.5 | — |
Mean Anomaly, W m−2 | |||||
---|---|---|---|---|---|
Heatwave | Dates | Duration | Sensible Heat Flux | Latent Heat Flux | Longwave Balance |
HW1 | 21 May–08 June | 19 days | +30.0 | +25.6 | 6.1 |
HW2 | 14 July–22 July | 9 days | −9.7 | +7.0 | −2.1 |
HW3 | 02 August–11 August | 10 days | −14.4 | +9.0 | −13.6 |
HW4 | 23 September–09 October | 17 days | +35.3 | +24.8 | +14.3 |
Dates | Duration, Days | Melt Rate; mm w.e. day−1 | Mean Sensible Flux; W m−2 | Mean Latent Flux; W m−2 |
---|---|---|---|---|
30 May | 1 | 61 | 130.4 | 20.3 |
25–26 June | 2 | 52 | 53.1 | 0.7 |
30 June | 1 | 54 | 60.2 | 26.2 |
7–9 July | 3 | 60 | 51.3 | 2.4 |
16–18 July | 3 | 54 | 53.1 | 20.0 |
30 July | 1 | 74 | 140.2 | 89.6 |
7 August | 1 | 51 | 72.4 | 48.8 |
3 September | 1 | 49 | 105.5 | 59.4 |
QM | QH | QLE | SWD | LWD | |
---|---|---|---|---|---|
Melt flux (QM) | - | 0.69 | 0.68 | 0.34 | 0.58 |
Sensible heat flux (QH) | 0.69 | - | 0.59 | −0.03 | 0.45 |
Latent heat flux (QLE) | 0.68 | 0.59 | - | −0.12 | 0.63 |
Downwelling short-wave radiation (SWD) | 0.34 | −0.03 | −0.12 | - | −0.31 |
Downwelling longwave radiation (LWD) | 0.58 | 0.45 | 0.63 | −0.31 | - |
Sensible Heat Flux | Latent Heat Flux | |||
---|---|---|---|---|
Total Dominance; Dimensionless | Relative Importance; % | Total Dominance; Dimensionless | Relative Importance; % | |
Wind speed | 0.50 | 65.9 | 0.01 | 2.7 |
Air temperature | 0.24 | 31.0 | 0.24 | 49.2 |
Air humidity | 0.01 | 1.4 | 0.17 | 35.0 |
Atmospheric pressure | 0.01 | 1.3 | 0.05 | 9.8 |
Downwelling solar radiation | 0.00 | 0.3 | 0.02 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokhorova, U.V.; Terekhov, A.V.; Demidov, V.E.; Romashova, K.V.; Barskov, K.V.; Chechin, D.G.; Vasilevich, I.I.; Tretiakov, M.V.; Ivanov, B.V.; Repina, I.A.; et al. Impact of Extreme Weather Events on the Surface Energy Balance of the Low-Elevation Svalbard Glacier Aldegondabreen. Water 2025, 17, 274. https://doi.org/10.3390/w17020274
Prokhorova UV, Terekhov AV, Demidov VE, Romashova KV, Barskov KV, Chechin DG, Vasilevich II, Tretiakov MV, Ivanov BV, Repina IA, et al. Impact of Extreme Weather Events on the Surface Energy Balance of the Low-Elevation Svalbard Glacier Aldegondabreen. Water. 2025; 17(2):274. https://doi.org/10.3390/w17020274
Chicago/Turabian StyleProkhorova, Uliana V., Anton V. Terekhov, Vasiliy E. Demidov, Kseniia V. Romashova, Kirill V. Barskov, Dmitry G. Chechin, Igor I. Vasilevich, Mikhail V. Tretiakov, Boris V. Ivanov, Irina A. Repina, and et al. 2025. "Impact of Extreme Weather Events on the Surface Energy Balance of the Low-Elevation Svalbard Glacier Aldegondabreen" Water 17, no. 2: 274. https://doi.org/10.3390/w17020274
APA StyleProkhorova, U. V., Terekhov, A. V., Demidov, V. E., Romashova, K. V., Barskov, K. V., Chechin, D. G., Vasilevich, I. I., Tretiakov, M. V., Ivanov, B. V., Repina, I. A., & Verkulich, S. R. (2025). Impact of Extreme Weather Events on the Surface Energy Balance of the Low-Elevation Svalbard Glacier Aldegondabreen. Water, 17(2), 274. https://doi.org/10.3390/w17020274