The Response Patterns of Non-Native Rotifer Species Kellicottia bostoniensis (Rousselet, 1908) to Environmental Factors and Its Relationship with Potential Competitors and Predators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data Collection
2.2. Data Collection
2.3. Classification of Functional Groups of Zooplankton
2.4. Statistical Methods
3. Results
3.1. Seasonal Variation in the Abundance of Kellicottia bostoniensis, Zooplankton Factors, and Environmental Factors
3.2. Comparison of Differences in Environmental Factors Between Lakes with the Presence and Absence of Kellicottia bostoniensis
3.3. Comparison of the Responses of Kellicottia bostoniensis, and Its Potential Competitor/Predator Groups to Environmental Factors
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Lake No. | Latitude | Longitude | Basin Area | Total Water Storage | Effective Storage | Height of Dike | Reservoir LENGTH |
---|---|---|---|---|---|---|---|
(ha) | (×103 m3) | (×103 m3) | (m) | (m) | |||
R-A-1 | 36.0656 | 127.6583 | 510 | 784 | 753 | 15.4 | 187 |
R-A-2 | 36.2845 | 127.3072 | 1375 | 2846 | 2821 | 20.0 | 187 |
R-A-3 | 36.3009 | 128.0128 | 2200 | 5773 | 5679 | 23.7 | 276 |
R-A-4 | 36.6027 | 127.2312 | 1620 | 5284 | 4868 | 17.0 | 226 |
R-A-5 | 36.4906 | 127.8435 | 4226 | 8236 | 8163 | 49.0 | 170 |
R-A-6 | 36.8669 | 127.3996 | 8479 | 26,618 | 26,372 | 28.7 | 401 |
R-A-7 | 36.8980 | 127.5712 | 706 | 14,329 | 13,907 | 33.0 | 237 |
R-A-8 | 36.8685 | 127.5998 | 3655 | 8791 | 8690 | 27.2 | 205 |
R-A-9 | 36.7408 | 127.4060 | 3310 | 7590 | 6390 | 26.7 | 202 |
R-A-10 | 36.2149 | 128.0208 | 1000 | 2206 | 2205 | 21.7 | 123 |
R-A-11 | 35.9930 | 126.8480 | 144 | 254 | 241 | 5.5 | 200 |
R-A-12 | 35.9504 | 127.0911 | 104 | 342 | 342 | 5.0 | 150 |
Appendix B
Lake No. | WT | pH | DO | TOC | COD | TN | TP | SS | Chl-a |
---|---|---|---|---|---|---|---|---|---|
°C | mg/L | mg/L | mg/L | mg/L | mg/m3 | mg/L | mg/m3 | ||
R-A-1 | 18.0 ± 5.0 | 7.9 ± 0.3 | 5.2 ± 4.4 | 5.3 ± 0.5 | 9.0 ± 1.7 | 1.5 ± 0.5 | 26.0 ± 8.4 | 4.3 ± 2.9 | 13.2 ± 10.4 |
11.4–23.5 | 7.5–8.1 | 1.2–10.9 | 4.9–5.9 | 7.6–11.2 | 1.0–2.2 | 19.0–36.0 | 0.9–7.0 | 1.9–27.0 | |
R-A-2 | 17.4 ± 4.7 | 7.7 ± 0.5 | 8.9 ± 4.2 | 4.4 ± 1.0 | 7.5 ± 1.9 | 1.2 ± 0.2 | 52.5 ± 40.5 | 8.9 ± 6.1 | 20.4 ± 15.8 |
11.6–23.1 | 6.9–8.2 | 4.2–14.4 | 3.2–5.6 | 4.8–9.0 | 0.9–1.3 | 12.0–99.0 | 1.3–14.9 | 3.3–41.4 | |
R-A-3 | 15.1 ± 6.1 | 7.2 ± 0.2 | 7.2 ± 3.3 | 3.3 ± 0.3 | 5.6 ± 1.2 | 0.9 ± 0.1 | 18.3 ± 6.9 | 2.4 ± 0.8 | 11.3 ± 8.5 |
8.1–22.3 | 6.9–7.4 | 4.4–11.4 | 2.9–3.6 | 4.6–7.2 | 0.8–1.0 | 11.0–27.0 | 1.7–3.4 | 3.4–22.6 | |
R-A-4 | 20 ± 5.9 | 7.6 ± 1.0 | 9.7 ± 3.3 | 3.4 ± 0.4 | 6.4 ± 1.2 | 1.6 ± 0.4 | 46.5 ± 43.5 | 9.7 ± 8.5 | 13.4 ± 13.0 |
12.0–25.9 | 6.9–9.1 | 4.9–12.1 | 3.0–4.0 | 4.8–7.6 | 1.4–2.2 | 12.0–110.0 | 4.0–22.3 | 4.2–32.6 | |
R-A-5 | 18.1 ± 8.1 | 7.3 ± 0.2 | 8.9 ± 2.8 | 2.0 ± 0.2 | 3.2 ± 0.3 | 0.8 ± 0.5 | 10.3 ± 7.1 | 1.3 ± 1.2 | 4.8 ± 2.4 |
7.3–25.0 | 7.0–7.5 | 6.9–13.0 | 1.7–2.3 | 2.8–3.6 | 0.3–1.4 | 4.0–20.0 | 0.5–3.1 | 2.3–8.1 | |
R-A-6 | 19.0 ± 8.5 | 8.0 ± 0.9 | 9.4 ± 4.1 | 3.1 ± 0.5 | 5.6 ± 0.9 | 1.2 ± 0.3 | 20.0 ± 7.1 | 3.2 ± 0.8 | 14.1 ± 3.3 |
7.0–25.8 | 7.4–9.4 | 4.3–13.3 | 2.6–3.6 | 4.6–6.7 | 1.0–1.6 | 12.0–29.0 | 2.4–4.4 | 11.3–18.8 | |
R-A-7 | 15.5 ± 8.2 | 8.0 ± 0.7 | 10.3 ± 3.2 | 3.7 ± 0.3 | 6.0 ± 0.7 | 1.1 ± 0.3 | 20.0 ± 3.6 | 3.2 ± 0.7 | 14.6 ± 1.7 |
5.9–24.2 | 7.5–9.1 | 6.3–13.2 | 3.4–4.1 | 5.4–7.0 | 0.6–1.3 | 17.0–25.0 | 2.7–4.2 | 13.1–17.1 | |
R-A-8 | 15.6 ± 8.0 | 7.9 ± 0.5 | 8.9 ± 2.4 | 3.1 ± 0.4 | 5.1 ± 1.1 | 1.2 ± 0.3 | 19.0 ± 11.0 | 3.2 ± 2.7 | 8.6 ± 5.4 |
6.6–25.8 | 7.2–8.4 | 6.6–11.9 | 2.7–3.4 | 4.0–6.6 | 0.9–1.6 | 9.0–29.0 | 0.7–6.2 | 3.5–15.7 | |
R-A-9 | 17.7 ± 6.7 | 8.4 ± 0.6 | 7.5 ± 4.7 | 4.6 ± 0.7 | 8.7 ± 2.4 | 1.8 ± 1.0 | 26.0 ± 21.3 | 7.3 ± 5.3 | 15.3 ± 10.5 |
9.7–25.2 | 8.0–9.2 | 0.7–11.3 | 3.7–5.2 | 5.8–10.6 | 0.7–3.0 | 9.0–56.0 | 1.0–12.4 | 5.5–28.4 | |
R-A-10 | 18.7 ± 8.0 | 7.8 ± 0.9 | 7.9 ± 5.2 | 5.3 ± 0.6 | 7.5 ± 0.6 | 1.1 ± 0.4 | 34.3 ± 13.7 | 3.8 ± 3.6 | 10.8 ± 2.0 |
9.2–26.7 | 7.0–9.0 | 1.1–13 | 4.6–5.8 | 7.0–8.2 | 0.8–1.7 | 20.0–47.0 | 1.0–9.1 | 8.5–12.9 | |
R-A-11 | 20.8 ± 5.7 | 7.6 ± 0.3 | 7.3 ± 1.6 | 6.2 ± 2.4 | 10.5 ± 4.4 | 1.7 ± 0.9 | 122.0 ± 95.1 | 18.9 ± 12.2 | 20.3 ± 18.3 |
14.5–25.7 | 7.3–7.9 | 6.2–9.7 | 4.5–9.7 | 6.4–16.5 | 0.7–3.0 | 22.0–243.0 | 2.3–31.3 | 4.3–45.5 | |
R-A-12 | 20.7 ± 5.0 | 7.5 ± 0.3 | 7.6 ± 2.0 | 7.8 ± 1.5 | 13.2 ± 3.2 | 2.6 ± 1.5 | 357.5 ± 209.6 | 10.5 ± 6.5 | 65.6 ± 51.3 |
15.1–26.0 | 7.1–7.8 | 5.4–9.8 | 6.5–9.9 | 10.0–16.1 | 0.8–4.5 | 100.0–601.0 | 4.4–19.7 | 29.2–141 |
Appendix C
Lake No. | K. bostoniensis | K. longispina | Competitor | Predator | Rotifer | Cladoceran | Copepod |
---|---|---|---|---|---|---|---|
ind./L | ind./L | ind./L | ind./L | ind./L | ind./L | ind./L | |
R-A-1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 9.1 ± 18.1 | 117.1 ± 162.2 | 158.9 ± 201.1 | 11.2 ± 18.1 | 8.3 ± 12.6 |
0.0–0.0 | 0.0–0.0 | 0.0–36.3 | 0.1–344.8 | 0.3–423.0 | 0.0–38.2 | 0.3–27.1 | |
R-A-2 | 0.6 ± 1.1 | 0.0 ± 0.0 | 92.8 ± 83.7 | 11.0 ± 6.6 | 183.5 ± 148.5 | 15.1 ± 11.4 | 23.4 ± 11.4 |
0.0–2.3 | 0.0–0.0 | 20.0–172.2 | 3.4–19.2 | 53.0–313.9 | 1.8–28.0 | 10.8–36.6 | |
R-A-3 | 1.7 ± 3.3 | 0.0 ± 0.0 | 2.8 ± 4.8 | 7.2 ± 7.3 | 26.1 ± 26.4 | 8.5 ± 8.6 | 35.9 ± 36.2 |
0.0–6.6 | 0.0–0.0 | 0.0–10.0 | 2.9–18.2 | 3.3–55.6 | 2.0–21.2 | 15.7–90.1 | |
R-A-4 | 33.8 ± 66.3 | 0.0 ± 0.0 | 10.8 ± 11.7 | 10.8 ± 10.3 | 147.4 ± 139 | 17.5 ± 9.9 | 57.7 ± 25.4 |
0.0–133.2 | 0.0–0.0 | 0.8–26.0 | 0.0–20.4 | 19.2–309.2 | 5.2–27.3 | 34.0–89.0 | |
R-A-5 | 0.0 ± 0.0 | 7.7 ± 13.7 | 14.7 ± 12.8 | 2.3 ± 3.5 | 150.6 ± 221.5 | 4.1 ± 4.2 | 32.1 ± 33.2 |
0.0–0.0 | 0.0–28.2 | 2.8–31.0 | 0.1–7.5 | 35.4–482.9 | 0.0–9.9 | 4.7–80.1 | |
R-A-6 | 3.3 ± 5.3 | 0.0 ± 0.0 | 17.1 ± 31.2 | 8.8 ± 9.1 | 69.1 ± 74.4 | 15.0 ± 15.3 | 26.9 ± 31.9 |
0.0–11.2 | 0.0–0.0 | 0.4–63.8 | 2.0–21.6 | 13.3–178.4 | 0.1–35.9 | 1.6–73.4 | |
R-A-7 | 1.2 ± 2.4 | 0.0 ± 0.0 | 9.8 ± 6.5 | 7.6 ± 8.2 | 76.6 ± 59.5 | 9.5 ± 9.1 | 30.8 ± 47.5 |
0.0–4.9 | 0.0–0.0 | 1.5–16.8 | 0.1–17.0 | 7.6–137.6 | 0.6–21.2 | 2.2–101.4 | |
R-A-8 | 0.1 ± 0.3 | 0.0 ± 0.0 | 15.0 ± 20.1 | 12.1 ± 11.1 | 192.6 ± 273.7 | 56.3 ± 97.1 | 54.8 ± 47.0 |
0.0–0.5 | 0.0–0.0 | 2.5–44.9 | 1.5–23.2 | 21.8–596.3 | 0.5–201.6 | 14.4–105.6 | |
R-A-9 | 1.6 ± 2.3 | 0.0 ± 0.0 | 6.3 ± 10.7 | 1.0 ± 0.8 | 51.1 ± 88.4 | 5.4 ± 4.9 | 11.8 ± 11.9 |
0.0–4.9 | 0.0–0.0 | 0.6–22.4 | 0.0–2.0 | 1.4–183.7 | 0.6–12.2 | 0.0.–25.1 | |
R-A-10 | 0.0 ± 0.0 | 0.0 ± 0.0 | 6.6 ± 10.0 | 9.6 ± 5.4 | 64.0 ± 73.8 | 8.7 ± 5.7 | 47.8 ± 31.7 |
0.0–0.0 | 0.0–0.0 | 0.6–21.4 | 4.5–17.2 | 9.4–173.1 | 2.9–14.0 | 14.7–75.3 | |
R-A-11 | 0.0 ± 0.0 | 0.0 ± 0.0 | 284.8 ± 191.4 | 49.0 ± 47.9 | 611.2 ± 423.7 | 19.4 ± 25.8 | 108.4 ± 73.6 |
0.0–0.0 | 0.0–0.0 | 10.6–434.2 | 0.3–113.7 | 37.8–943.5 | 0.7–57.3 | 19.5–197.4 | |
R-A-12 | 0.0 ± 0.0 | 0.0 ± 0.0 | 377.6 ± 678 | 7.0 ± 9.1 | 746.0 ± 1231.4 | 1.8 ± 2.8 | 60.7 ± 42.2 |
0.0–0.0 | 0.0–0.0 | 3.0–1393.6 | 0.4–19.8 | 7.6–2583.0 | 0.0–6.1 | 22.2–105.7 |
References
- Linders, T.E.W.; Schaffner, U.; Eschen, R.; Abebe, A.; Choge, S.K.; Nigatu, L.; Mbaabu, P.R.; Shiferaw, H.; Allan, E. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. 2019, 107, 2660–2672. [Google Scholar] [CrossRef]
- Winter, M.; Schweiger, O.; Klotz, S.; Nentwig, W.; Andriopoulos, P.; Arianoutsou, M.; Basnou, C.; Delipetrou, P.; Didžiulis, V.; Hejda, M.; et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl. Acad. Sci. USA 2009, 106, 21721–21725. [Google Scholar] [CrossRef]
- DeRivera, C.E.; Ruiz, G.M.; Hines, A.H.; Jivoff, P. Biotic resistance to invasion: Native predator limits abundance and distribution of an introduced crab. Ecology 2005, 86, 3364–3376. [Google Scholar] [CrossRef]
- Padilla, D.; Williams, S. Beyond ballast water: Aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front. Ecol. Environ. 2004; 2, 131–138. [Google Scholar]
- Jeschke, J.M.; Strayer, D.L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N. Y. Acad. Sci. Ann. N. Y. Acad. Sci. 2008, 1134, 1–24. [Google Scholar] [CrossRef]
- Carlin, B. Die Planktonrotatorien des Motal: Taxonomie und Ökologie der Planktonrotatoren. Meddel. Lunds Univ. Limnol. Inst. 1943, 5, 1–260. [Google Scholar]
- Eloranta, P. Kellicottia bostoniensis (Rousselet), a planktonic rotifer species new to Finland. Ann. Zool. Fennici. 1988, 25, 249–252. [Google Scholar]
- Lopes, R.; Lansac-Toha, F.A.; Vale, R.; Serafim, M., Jr. Comunidade zooplanctônica do reservatório de Segredo. In Reservatório de Segredo: Bases Ecológicas para o Manejo; Eduem: Maringá; Maringa (Brazil) EDUEM: Maringa, Brazil, 1997; pp. 39–60. [Google Scholar]
- de Fátima Bomfim, F.; Mantovano, T.; Schwind, L.T.F.; Palazzo, F.; Bonecker, C.C.; Lansac-Tôha, F.A. Geographical spread of the invasive species Kellicottia longispina (Kellicott, 1879) and K. bostoniensis (Rousselet, 1908): A scientometric approach. Acta Sci. Biol. Sci. 2016, 38, 29–36. [Google Scholar] [CrossRef]
- Mantovano, T.; Diniz, L.P.; de Oliveira da Conceição, E.; Rosa, J.; Bonecker, C.C.; Bailly, D.; Ferreira, J.H.D.; Rangel, T.F.; Lansac-Toha, F.A. Ecological niche models predict the potential distribution of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) across the globe. Hydrobiologia 2021, 848, 299–309. [Google Scholar] [CrossRef]
- Sudzuki, M.; Kawakita, M. A rare rotifer, Kellicottia bostoniensis from Japan. Zool. Sci. 1999, 16, 39. [Google Scholar]
- Yang, H.M.; Min, G.S. New record of Kellicottia bostoniensis and redescription of two freshwater rotifers from Korea (Rotifera: Monogononta). Anim. Syst. Evol. Divers. 2020, 36, 222–227. [Google Scholar]
- Hwang, S.J.; Kwun, S.K.; Yoon, C.G. Water quality and limnology of Korean reservoirs. Paddy Water Environ. 2003, 1, 43–52. [Google Scholar] [CrossRef]
- Palazzo, F.; Moi, D.A.; Mantovano, T.; Lansac-Tôha, F.A.; Bonecker, C.C. Assessment of the occurrence and abundance of an exotic zooplankton species (Kellicottia bostoniensis) across a neotropical wetland over 12 years. Limnology 2023, 24, 137–149. [Google Scholar] [CrossRef]
- Branco, C.W.C.; Santos-Cabral, L.C.; Kozlowsky-Suzuki, B.; Lopes, V.G.; Puga, A.L.; Macêdo, R.L. Persistence of the non-native Kellicottia bostoniensis (Rousselet, 1908) in a large tropical reservoir. Hydrobiologia 2024, 851, 3039–3060. [Google Scholar] [CrossRef]
- Zhdanova, S.M.; Lazareva, V.I.; Bayanov, N.G.; Lobunicheva, E.V.; Rodionova, N.V.; Shurganova, G.V.; Zolotareva, T.V.; Il’in, M.Y. Morphological variability of Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in waterbodies of European Russia. Inland Water Biology. 2019, 12, 140–149. [Google Scholar] [CrossRef]
- Macêdo, R.L.; Franco, A.C.S.; Klippel, G.; Oliveira, E.F.; Silva, L.H.S.; dos Santos, L.N.; Branco, C.W. Small in size but rather pervasive: The spread of the North American rotifer Kellicottia bostoniensis (Rousselet, 1908) through Neotropical basins. BioInvasions Rec. 2020, 9, 287–302. [Google Scholar] [CrossRef]
- Gilbert, J.J. Observations on the susceptibility of some protists and rotifers to predation by Asplanchna girodi. In Rotatoria: Proceedings of the 2nd International Rotifer Symposium Held at Gent, September 17–21; Springer: Dordrecht, The Netherlands, 1979; pp. 87–91. [Google Scholar]
- Gilbert, J.J. Food niches of planktonic rotifers: Diversification and implications. Limnol. Oceanogr. 2022, 67, 2218–2251. [Google Scholar] [CrossRef]
- Sanders, R.W.; Porter, K.G.; Bennett, S.J.; DeBiase, A.E. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 1989, 34, 673–687. [Google Scholar] [CrossRef]
- Erman, L.A. On the utilization of the reservoirs’ trophic resources by plankton rotifers. Byull. Mosk. Obshch. Ispyt. Prir. 1962, 67, 32–47. [Google Scholar]
- Karpowicz, M.; Zieliński, P.; Grabowska, M.; Ejsmont-Karabin, J.; Kozłowska, J.; Feniova, I. Effect of eutrophication and humification on nutrient cycles and transfer efficiency of matter in freshwater food webs. Hydrobiologia 2020, 847, 2521–2540. [Google Scholar] [CrossRef]
- Shurganova, G.V.; Zolotareva, T.V.; Kudrin, I.A.; Zhikharev, V.S.; Gavrilko, D.E.; Il’in, M.I. Abundance of related species, Kellicottia bostoniensis (Rousselet, 1908) and K. longispina (Kellicott, 1879) (Rotifera: Brachionidae), in the zooplankton communities of the Pustynskaya lake-river system (Nizhny Novgorod region). Russ. J. Biol. Invasions 2021, 12, 219–231. [Google Scholar] [CrossRef]
- Oh, H.J.; Jeong, H.G.; Nam, G.S.; Oda, Y.; Dai, W.; Lee, E.H.; Hwang, S.J.; Chang, K.H. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: Applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst. 2017, 21, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Fontaneto, D.; De Smet, W.H. Rotifera. In Gastrotricha and Gnathifera; Schmidt-Rhaesa, A., Ed.; De Gruyter: Berlin, Germany, 2015; pp. 217–300. [Google Scholar]
- Sharma, S.S.S. Zooplankton diversity: Freshwater planktonic and semi-planktonic Rotifera. In Water Quality Assessment Biomonitoring and Zooplankton Diversity; North Eastern Hill University: Meghalaya, India, 2001; pp. 190–215. [Google Scholar]
- Karabin, A. The pressure of pelagic predators of the genus Mesocyclops (Copepoda, Crustacea) on small zooplankton. Ekol. Pol. 1978, 26, 241–257. [Google Scholar]
- Stemberger, R.S.; Evans, M.S. Rotifer seasonal succession and copepod predation in Lake Michigan. J. Great Lakes Res. 1984, 10, 417–428. [Google Scholar] [CrossRef]
- Gilbert, J.J.; Williamson, C.E. Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 1978, 37, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Hornik, K.; van de Wiel, M.A.; Zeileis, A. A Lego system for conditional inference. Am. Stat. 2006, 60, 257–263. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. vegan: Community Ecology Package; R package version 2.6-4. Available online: https://CRAN.R-project.org/package=vegan (accessed on 10 December 2024).
- Hill, M.O.; Gauch, H.G. Detrended correspondence analysis: An improved ordination technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Campbell, R.S. Vertical distribution of the plankton Rotifera in Douglas Lake, Michigan, with special reference to submerged depression individuality. Ecol. Monogr. 1941, 11, 2–19. [Google Scholar] [CrossRef]
- Arnemo, R.; Berzins, B.; Grönberg, B.; Mellgren, I. The dispersal in Swedish waters of Kellicottia bostoniensis (Rousselet) (Rotatoria). Oikos 1968, 19, 351–358. [Google Scholar] [CrossRef]
- Zhdanova, S.M.; Dobrynin, A.E. Kellicotia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in waterbodies of European Russia. Inland Water Biol. 2011, 4, 39–46. [Google Scholar] [CrossRef]
- Zolotareva, T.V.; Shurganova, G.V.; Kudrin, I.A.; Gavrilko, D.E.; Zhikharev, V.S.; Kolesnikov, A.A.; Il’in, M.Y. Morphological characteristics of Kellicottia bostoniensis (Rousselet, 1908) (Rotifera: Brachionidae) in water bodies of the Middle Volga basin. Povolzhskiy J. Ecol. 2021, 1, 16–34. [Google Scholar] [CrossRef]
- Podshivalina, V.N.; Semenova, A.S. Kellicottia bostoniensis (Rousselet, 1908) and K. longispina (Kellicott, 1879) (Rotifera: Brachionidae): Features of occurrence and distribution in the lakes of the Upper and Middle Volga Region. Russ. J. Biol. Invasions 2023, 14, 376–388. [Google Scholar] [CrossRef]
- García-Chicote, J.; Armengol, X.; Rojo, C. Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters 2019, 9, 113–123. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Oh, H.J.; Chang, K.H.; Seo, D.I.; Nam, G.S.; Lee, E.H.; Jeong, H.G.; Yoon, J.D.; Oh, J.M. Zooplankton community as an indicator for environmental assessment of aquatic ecosystem: Application of rotifer functional groups for evaluating water quality in eutrophic reservoirs. J. Environ. Impact Assess. 2017, 26, 404–417. [Google Scholar]
- Qian, F.P.; Wen, X.L.; Xi, Y.L. Seasonal variations of rotifer communities in three climatic zones: Effects of environmental parameters on changes of functional groups. Limnology 2022, 23, 1–16. [Google Scholar] [CrossRef]
- Obertegger, U.; Smith, H.A.; Flaim, G.; Wallace, R.L. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 2011, 662, 157–162. [Google Scholar] [CrossRef]
- Koste, W.; Shiel, R.J. Rotifera from Australian inland waters. II. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invert. Taxon. 1987, 7, 949–1021. [Google Scholar] [CrossRef]
- Lokko, K.; Virro, T.; Kotta, J. Seasonal variability in the structure and functional diversity of psammic rotifer communities: Role of environmental parameters. Hydrobiologia 2017, 796, 287–307. [Google Scholar] [CrossRef]
- Bogdan, K.G.; Gilbert, J.J.; Starkweather, P.L. In situ clearance rates of planktonic rotifers. In Rotatoria; Pejler, B., Ed.; Springer: Dordrecht, The Netherlands, 1980; pp. 73–77. [Google Scholar]
- Starkweather, P.L.; Bogdan, K.G. Detrital feeding in natural zooplankton communities: Discrimination between live and dead algal foods. Hydrobiologia 1980, 73, 83–85. [Google Scholar] [CrossRef]
- Starkweather, P.L. Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. In Rotatoria; Pejler, B., Ed.; Springer: Dordrecht, The Netherlands, 1980; pp. 63–72. [Google Scholar]
- Stemberger, R.S.; Gilbert, J.J. Body size, food concentration, and population growth in planktonic rotifers. Ecology 1985, 66, 1151–1159. [Google Scholar] [CrossRef]
- Perbiche-Neves, G.; Saito, V.S.; Previattelli, D.; Da Rocha, C.E.; Nogueira, M.G. Cyclopoid copepods as bioindicators of eutrophication in reservoirs: Do patterns hold for large spatial extents? Ecol. Indic. 2016, 70, 340–347. [Google Scholar] [CrossRef]
- Chang, K.H.; Nishibe, Y.; Nakano, S.I. Feeding habits of omnivorous Asplanchna: Comparison of diet composition among Asplanchna herricki, A. priodonta, and A. girodi in pond ecosystems. J. Limnol. 2010, 69, 209–216. [Google Scholar] [CrossRef]
Functional Group | Habitat Type | ||
---|---|---|---|
Planktonic | Littoral, Periphytic | ||
trophi | Malleate type | Anuraeopsis, Brachionus, Kellicottia, Keratella | Euchlanis, Lecane, Lepadella, Mytilina, Platyias, Trichotria |
Virgate type | Ascomorpha, Cephalodella, Ploesoma, Polyarthra, Synchaeta, Trichocerca | - | |
Incudate type | Asplachna | - | |
Ramate type | Rotaria | Philodina | |
Malleoramate type | Conochilus, Filinia, Hexarthra, Pompholyx | Testudinella, Tetramastix |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, G.-H.; Choi, Y.; Lee, D.-H.; Kim, J.-H.; Chang, K.-H.; Oh, H.-J. The Response Patterns of Non-Native Rotifer Species Kellicottia bostoniensis (Rousselet, 1908) to Environmental Factors and Its Relationship with Potential Competitors and Predators. Water 2025, 17, 273. https://doi.org/10.3390/w17020273
Hong G-H, Choi Y, Lee D-H, Kim J-H, Chang K-H, Oh H-J. The Response Patterns of Non-Native Rotifer Species Kellicottia bostoniensis (Rousselet, 1908) to Environmental Factors and Its Relationship with Potential Competitors and Predators. Water. 2025; 17(2):273. https://doi.org/10.3390/w17020273
Chicago/Turabian StyleHong, Geun-Hyeok, Yerim Choi, Dae-Hee Lee, Jeong-Hui Kim, Kwang-Hyeon Chang, and Hye-Ji Oh. 2025. "The Response Patterns of Non-Native Rotifer Species Kellicottia bostoniensis (Rousselet, 1908) to Environmental Factors and Its Relationship with Potential Competitors and Predators" Water 17, no. 2: 273. https://doi.org/10.3390/w17020273
APA StyleHong, G.-H., Choi, Y., Lee, D.-H., Kim, J.-H., Chang, K.-H., & Oh, H.-J. (2025). The Response Patterns of Non-Native Rotifer Species Kellicottia bostoniensis (Rousselet, 1908) to Environmental Factors and Its Relationship with Potential Competitors and Predators. Water, 17(2), 273. https://doi.org/10.3390/w17020273