A Single Water Pipeline Design Considering Pressure-Dependent Consumptions: A New Perspective
Abstract
:1. Introduction
2. Materials and Methods
- Current design: The single-pipeline design employs the continuity equation, energy loss calculations, and the Darcy–Weisbach equation to determine internal pipe diameters through optimisation. This process assumes a percentage of water losses based on local regulations or the expertise of engineers and designers.
- Design considering leakages: This research incorporates the water balance framework proposed by the International Water Association (IWA) for sizing single pipelines. Additionally, the methodology involves calibrating the emitter coefficient using data from existing pipelines with similar characteristics, which can then be applied to design new water infrastructure (see Section 2.1).
- Optimisation process and numerical resolution: Finally, the developed methodology introduces a flowchart to address the problem systematically (see Section 2.3).
2.1. Proposed Methodology
- Water movement is calculated using the Bernoulli equation.
- Friction accounts for energy losses are computed using the Darcy–Weisbach formula.
- Water leakages depend on the mean pressure head of a conduit, and they occur at the downstream end.
2.2. Governing Formulations
2.3. Optimisation Process and Numerical Resolution
3. Results
3.1. Dataset and Results
3.2. Effect of Main Parameters
3.2.1. Emitter Coefficient
3.2.2. Variation in Absolute Roughness
3.2.3. Resistance Coefficient
4. Discussion
4.1. Analysis Considering Percentage of Water Losses
4.2. A Comparison Between the Traditional and Proposed Methodologies
4.3. Analysis of Formulas for Computing Water Leaks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Governing Equations
Appendix A.1. Total Flow
Appendix A.2. Leakage Flow
Appendix A.3. Energy Loss Equation
Appendix A.4. Darcy–Weisbach Equation
Appendix A.5. Friction Factor Equation
References
- Lambert, A. Accounting for Losses: The Bursts and Background Concept. Water Environ. J. 1994, 8, 205–214. [Google Scholar] [CrossRef]
- Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. [Google Scholar] [CrossRef]
- Hirner, W.; Lambert, A. Losses from Water Supply Systems: Standard Terminology and Recommended Performance Measures; IWA: London, UK, 2000. [Google Scholar]
- Niebuhr, D.; Nsanzubuhoro, R.; van Zyl, J.E. Field Experience with Pressure-Based Leakage Characterisation of Bulk Water Pipelines. Urban Water J. 2019, 16, 709–717. [Google Scholar] [CrossRef]
- Sophocleous, S.; Savić, D.A.; Kapelan, Z.; Giustolisi, O. A Two-Stage Calibration for Detection of Leakage Hotspots in a Real Water Distribution Network. Procedia Eng. 2017, 186, 168–176. [Google Scholar] [CrossRef]
- Aksela, K.; Aksela, M.; Vahala, R. Leakage Detection in a Real Distribution Network Using a SOM. Urban Water J. 2009, 6, 279–289. [Google Scholar] [CrossRef]
- Ulanicki, B.; Bounds, P.L.M.; Rance, J.P.; Reynolds, L. Open and Closed Loop Pressure Control for Leakage Reduction. Urban Water 2000, 2, 105–114. [Google Scholar] [CrossRef]
- AL-Washali, T.; Sharma, S.; Lupoja, R.; AL-Nozaily, F.; Haidera, M.; Kennedy, M. Assessment of Water Losses in Distribution Networks: Methods, Applications, Uncertainties, and Implications in Intermittent Supply. Resour. Conserv. Recycl. 2020, 152, 104515. [Google Scholar] [CrossRef]
- Saldarriaga, J.; Salcedo, C.A. Determination of Optimal Location and Settings of Pressure Reducing Valves in Water Distribution Networks for Minimizing Water Losses. Procedia Eng. 2015, 119, 973–983. [Google Scholar] [CrossRef]
- Deyi, M.; van Zyl, J.; Shepherd, M. Applying the FAVAD Concept and Leakage Number to Real Networks: A Case Study in Kwadabeka, South Africa. Procedia Eng. 2014, 89, 1537–1544. [Google Scholar] [CrossRef]
- Coronado-Hernández, O.E.; Pérez-Sánchez, M.; Arrieta-Pastrana, A.; Fuertes-Miquel, V.S.; Coronado-Hernández, J.R.; Quiñones-Bolaños, E.; Ramos, H.M. Dynamic Effects of a Regulating Valve in the Assessment of Water Leakages in Single Pipelines. Water Resour. Manag. 2024, 38, 2889–2903. [Google Scholar] [CrossRef]
- Fuertes-Miquel, V.S.; Arrieta-Pastrana, A.; Coronado-Hernández, O.E. Analyzing Water Leakages in Parallel Pipe Systems with Rapid Regulating Valve Maneuvers. Water 2024, 16, 926. [Google Scholar] [CrossRef]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A Review of Methods for Leakage Management in Pipe Networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Maskit, M.; Ostfeld, A. Leakage Calibration of Water Distribution Networks. Procedia Eng. 2014, 89, 664–671. [Google Scholar] [CrossRef]
- Samir, N.; Kansoh, R.; Elbarki, W.; Fleifle, A. Pressure Control for Minimizing Leakage in Water Distribution Systems. Alex. Eng. J. 2017, 56, 601–612. [Google Scholar] [CrossRef]
- García-Ávila, F.; Avilés-Añazco, A.; Ordoñez-Jara, J.; Guanuchi-Quezada, C.; Flores del Pino, L.; Ramos-Fernández, L. Pressure Management for Leakage Reduction Using Pressure Reducing Valves. Case Study in an Andean City. Alex. Eng. J. 2019, 58, 1313–1326. [Google Scholar] [CrossRef]
- Pezzinga, G.; Pititto, G. Combined Optimization of Pipes and Control Valves in Water Distribution Networks. J. Hydraul. Res. 2005, 43, 668–677. [Google Scholar] [CrossRef]
- Ramos, H.M.; Kuriqi, A.; Coronado-Hernández, O.E.; López-Jiménez, P.A.; Pérez-Sánchez, M. Are Digital Twins Improving Urban-Water Systems Efficiency and Sustainable Development Goals? Urban Water J. 2023, 21, 1164–1175. [Google Scholar] [CrossRef]
- Ramos, H.M.; Morani, M.C.; Carravetta, A.; Fecarrotta, O.; Adeyeye, K.; López-Jiménez, P.A.; Pérez-Sánchez, M. New challenges towards smart systems’ efficiency by digital twin in water distribution networks. Water 2022, 14, 1304. [Google Scholar] [CrossRef]
- Lee, M.K.; Kim, D.; Kim, M.O. Experimental Study on the Chlorine-Induced Corrosion and Blister Formation of Steel Pipes Coated with Modified Polyethylene Powder. Polymers 2024, 16, 2415. [Google Scholar] [CrossRef]
- Langelandsvik, L.I.; Kunkel, G.J.; Smits, A.J. Flow in a Commercial Steel Pipe. J. Fluid. Mech. 2008, 595, 323–339. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Yang, S.; Liu, J.; Guo, Z.; Feng, L.; Shang, W.; Zhu, L.; Du, B. Field Load Testing and Numerical Analysis of Offshore Photovoltaic Steel Pipe Piles. Soil Dyn. Earthq. Eng. 2025, 188, 109034. [Google Scholar] [CrossRef]
- Enany, P.; Shevchenko, O.; Drebenshtedt, C. Evaluation of Airlift Pump Performance for Vertical Conveying of Coal Particles. Int. J. Coal Sci. Technol. 2023, 10, 42. [Google Scholar] [CrossRef]
- Enany, P.; Drebenshtedt, C. Performance Characteristics of the Airlift Pump under Vertical Solid–Water–Gas Flow Conditions for Conveying Centimetric-Sized Coal Particles. Int. J. Coal Sci. Technol. 2024, 11, 18. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.; Wang, Y.; Fu, D. Influence of Water Coupling Coefficient on the Blasting Effect of Red Sandstone Specimens. Int. J. Coal Sci. Technol. 2024, 11, 8. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.; Li, Q.; Wu, J.; Zhong, W.; Huang, Z. Water–Rock Two-Phase Flow Model for Water Inrush and Instability of Fault Rocks during Mine Tunnelling. Int. J. Coal Sci. Technol. 2023, 10, 77. [Google Scholar] [CrossRef]
- Wang, D.; Jiao, D.; Cheng, Z.; Shi, Q.; Mischo, H. Multi-Criteria Comparative Analysis of the Pressure Drop on Coal Gangue Fly-Ash Slurry at Different Parts along an L-Shaped Pipeline. Int. J. Coal Sci. Technol. 2023, 10, 28. [Google Scholar] [CrossRef]
- Bernard, M. Using Digital Twins to Improve Pumping and Distribution System Operations. J. AWWA 2024, 116, 6–15. [Google Scholar] [CrossRef]
- Zechman, B.E.; Ehsan, S.M.; Lu, X.; Jason, W. Digital Twins for Water Distribution Systems. J. Water Resour. Plan. Manag. 2023, 149, 02523001. [Google Scholar] [CrossRef]
- Ramos, H.M.; McNabola, A.; López-Jiménez, P.A.; Pérez-Sánchez, M. Smart water management towards future water sustainable networks. Water 2020, 12, 58. [Google Scholar] [CrossRef]
- Alzamora, F.M.; Carot, M.H.; Carles, J.; Campos, A. Development and Use of a Digital Twin for the Water Supply and Distribution Network of Valencia (Spain). In Proceedings of the 17th International Computing & Control for the Water Industry Conference, Exeter, UK, 1–4 September 2019. [Google Scholar]
- Vivienda, M.; Territorio, C. Ministry of Housing, C. and D. (MinVivienda). Resolution No. 0799/2021. Available online: https://minvivienda.gov.co/sites/default/files/normativa/0799_2021.pdf (accessed on 18 December 2024).
- Almandoz, J.; Cabrera, E.; Arregui, F.; Cabrera, E.; Cobacho, R. Leakage Assessment through Water Distribution Network Simulation. J. Water Resour. Plan. Manag. 2005, 131, 458–466. [Google Scholar] [CrossRef]
- Rubenstein, D.A.; Yin, W.; Frame, M.D. Chapter 3—Conservation Laws. In Biofluid Mechanics, 3rd ed.; Rubenstein, D.A., Yin, W., Frame, M.D., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 71–131. [Google Scholar] [CrossRef]
- Streeter, V.L.; Kestin, J. Handbook of Fluid Dynamics; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
- Swamee, P.K.; Jain, A.K. Explicit Equations for Pipe-Flow Problems. J. Hydraul. Div. 1976, 102, 657–664. [Google Scholar] [CrossRef]
Authors | () | Diameter (mm) | Pipe Length (m) | Water Losses (%) | ||||
---|---|---|---|---|---|---|---|---|
<0.01 | ≥0.01 | <300 | ≥300 | <10,000 | ≥10,000 | <50% | ≥50% | |
Niebuhr et al. (2019) [4] | ✓ | ✓ | ✓ | ✓ | ||||
Sophocleous et al. (2017) [5] | ✓ | ✓ | ✓ | ✓ | ||||
Aksela et al. (2009) [6] | ✓ | ✓ | ✓ | ✓ | ||||
Ulanicki et al. (2000) [7] | ✓ | ✓ | ✓ | ✓ | ||||
AL-Washali et al. (2020) [8] | ✓ | ✓ | ✓ | ✓ | ||||
Saldarriaga and Salcedo (2015) [9] | ✓ | ✓ | ✓ | ✓ | ||||
Deyi et al. (2014) [10] | ✓ | ✓ | ✓ | ✓ | ||||
Coronado-Hernández et al. (2024) [11] | ✓ | ✓ | ✓ | ✓ | ||||
Fuertes-Miquel et al. (2024) [12] | ✓ | ✓ | ✓ | ✓ | ||||
Puust et al. (2010) [13] | ✓ | ✓ | ✓ | ✓ | ||||
Maskit and Ostfeld (2014) [14] | ✓ | ✓ | ✓ | ✓ | ||||
Samir et al. (2017) [15] | ✓ | ✓ | ✓ | ✓ | ||||
García-Ávila et al. (2019) [16] | ✓ | ✓ | ✓ | ✓ | ||||
Pezzinga and Pititto (2005) [17] | ✓ | ✓ | ✓ | ✓ |
Method | Advantages | Disadvantages |
---|---|---|
Traditional method (pressure-independent consumption) | - Utilises recommendations from local regulations to establish percentage of water losses - Algorithm for numerical resolution is more straightforward than proposed methodology - Numerous algorithms exist for designing pipelines in parallel, series, open, and closed networks | - The percentage of water losses considered does not reflect physical behaviour, as water losses occur in existing water installations. - It is not based on the modern concept of a digital twin model. |
Proposed methodology (pressure-dependent consumption) | - Based on physical concept, as water losses occur in existing water installations - Facilitates preliminary establishment of digital twin model - Does not require selecting predefined percentage of water losses | - It requires a detailed analysis to compute parameters for quantifying water losses (pressure-dependent consumption) in existing infrastructure. - The numerical resolution is more complex than the traditional method. - No algorithms are currently proposed for parallel, series, open, or closed water distribution networks. - It requires the modification of local regulations to allow for the sizing of water installations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puerta-Zurita, M.; Villero-Guerra, J.J.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Saba, M. A Single Water Pipeline Design Considering Pressure-Dependent Consumptions: A New Perspective. Water 2025, 17, 307. https://doi.org/10.3390/w17030307
Puerta-Zurita M, Villero-Guerra JJ, Coronado-Hernández OE, Fuertes-Miquel VS, Saba M. A Single Water Pipeline Design Considering Pressure-Dependent Consumptions: A New Perspective. Water. 2025; 17(3):307. https://doi.org/10.3390/w17030307
Chicago/Turabian StylePuerta-Zurita, Mariangel, Juan J. Villero-Guerra, Oscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, and Manuel Saba. 2025. "A Single Water Pipeline Design Considering Pressure-Dependent Consumptions: A New Perspective" Water 17, no. 3: 307. https://doi.org/10.3390/w17030307
APA StylePuerta-Zurita, M., Villero-Guerra, J. J., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., & Saba, M. (2025). A Single Water Pipeline Design Considering Pressure-Dependent Consumptions: A New Perspective. Water, 17(3), 307. https://doi.org/10.3390/w17030307