Impacts of Reclaimed Water Irrigation on Soil Salinity, Nutrient Cycling, and Landscape Plant Growth in a Coastal Monsoon Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Sampling and Analysis
2.3. RW Samples Analysis
2.4. Plant Growth Analysis
2.5. Statistical Analysis
3. Results
3.1. Characteristics of RW for Irrigation
3.2. Effect of RW on Soil Physical and Chemical Properties
3.2.1. Soil Salinity
3.2.2. Soil Nutrients
3.2.3. Soil Enzyme Activities
3.2.4. Soil Structure
3.2.5. Soil Heavy Metals
3.3. Plant Growth Response
4. Discussion
4.1. RW Quality and Its Implication for Irrigation
4.2. Soil Salinity Variations and Influencing Factors
4.3. Influence of RW Irrigation on Soil Nutrient Dynamics
4.4. Environmental Significance of RW Irrigation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2021, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nation (FAO). Rome Water Dialogue 2023. 2023. Available online: https://www.fao.org/events/detail/rome-water-dialogue-2023/ (accessed on 25 December 2024).
- Siebert, S.; Burke, J.; Faurès, J.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.S.; Chang, A.; Zhang, Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef]
- Tunc, T.; Sahin, U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agric. Water Manag. 2015, 158, 213–224. [Google Scholar] [CrossRef]
- Cao, K.F.; Chen, Z.; Wu, Y.H.; Mao, Y.; Shi, Q.; Chen, X.W.; Bai, Y.; Li, K.X.; Hu, H.Y. The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies. Water Res. 2022, 215, 118271. [Google Scholar] [CrossRef] [PubMed]
- Zalacáin, D.; Bienes, R.; Sastre-Merlín, A.; Martínez-Pérez, S.; García-Díaz, A. Influence of reclaimed water irrigation in soil physical properties of urban parks: A case study in Madrid (Spain). CATENA 2019, 180, 333–340. [Google Scholar] [CrossRef]
- Daliakopoulos, I.; Tsanis, I.; Tsanis, I.; Koutroulis, A.; Kourgialas, N.; Varouchakis, A.E.; Karatzas, G.; Ritsema, C. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef] [PubMed]
- Bannari, A.; Al-Ali, Z.M. Assessing Climate Change Impact on Soil Salinity Dynamics between 1987–2017 in Arid Landscape Using Landsat TM, ETM+ and OLI Data. Remote Sens. 2020, 12, 2794. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Liu, X.; Sun, H. Evaluating soil water and salt transport in response to varied rainfall events and hydrological years under brackish water irrigation in the North China Plain. Geoderma 2022, 422, 115954. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Li, Q.S.; Deng, J.; Ma, X.Y.; Liao, X.B.; Zou, J.; Li, G.X.; Chen, G.Y.; Dai, H.L. Rainwater extracting characteristics and its potential impact on DBPs generation: A case study. Sci. Total Environ. 2024, 906, 167282. [Google Scholar] [CrossRef]
- Guo, W.; Andersen, M.; Qi, X.B.; Ping, L.; Li, Z.Y.; Fan, X.Y.; Zhou, Y.G. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil. J. Integr. Agric. 2017, 16, 679–690. [Google Scholar] [CrossRef]
- Erel, R.; Eppel, A.; Yermiyahu, U.; Ben-Gal, A.; Levy, G.; Zipori, I.; Schaumann, G.E.; Mayer, O.; Dag, A. Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agric. Water Manag. 2019, 213, 324–335. [Google Scholar] [CrossRef]
- Maestre-Valero, J.; González-Ortega, M.; Martínez-Álvarez, V.; Gallego-Elvira, B.; Conesa-Jodar, F.J.; Martin-Gorriz, B. Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain. Agric. Water Manag. 2019, 218, 174–181. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.B.; Zhang, S.Z.; Wei, D.P.; Zhu, Y.G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Segal, E.; Dag, A.; Ben-Gal, A.; Zipori, I.; Erel, R.; Suryano, S.; Yermiyahu, U. Olive orchard irrigation with reclaimed wastewater: Agronomic and environmental considerations. Agric. Ecosyst. Environ. 2011, 140, 454–461. [Google Scholar] [CrossRef]
- Leonel, L.P.; Tonetti, A.L. Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
- Chen, W.P.; Lu, S.D.; Pan, N.; Wang, Y.C.; Wu, L.S. Impact of reclaimed water irrigation on soil health in urban green areas. Chemosphere 2015, 119, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.L.; Li, X.D.; Shi, W.Z.; Cheung, S.C.N.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [PubMed]
- HJ 962-2018; Soil Determination of pH Potentionetry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201808/t20180815_451430.shtml (accessed on 25 December 2024).
- Jiang, S.G. Review on soil bulk density deter mination method. Hubei Agric. Sci. 2019, 58 (Suppl. S2), 82–86+91. [Google Scholar] [CrossRef]
- NY/T 1121.4-2006; Soil Testing Part 4: Method for Determination of Soil Bulk Density. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing China, 2006. Available online: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=B7A5B403D0745CE9E05397BE0A0A203B (accessed on 25 December 2024).
- LY/T 1243-1999; Determination of Cation Exchange Capacity in Forest Soil. State Forestry Administration of the People’s Republic of China: Beijing, China, 1999. Available online: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=8B1827F17C02BB19E05397BE0A0AB44A (accessed on 25 December 2024).
- NY/T 1121.16-2006; Soil Testing Part 16: Method for Determination of Total Water-Soluble Salt. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2006. Available online: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=B7A5B403D06F5CE9E05397BE0A0A203B (accessed on 25 December 2024).
- NY/T 1121.7-2014; Soil Testing. Part 7: Method for Determination of Available Phosphorus in Soil. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2014. Available online: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=AF7D4A1CE64B1558E05397BE0A0A9D1D (accessed on 25 December 2024).
- NY/T 87-1988; Method for Determination of Total Potassium in Soils. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 1988. Available online: https://www.cssn.net.cn/cssn/productDetail/e29b451b0bb4184e2c7d96bb1c38e74f (accessed on 25 December 2024).
- NY/T 1121.24-2012; Soil Testing. Part 24: Determination of Total Nitrogen in Soil. Automatic Kjeldahl Apparatus Method. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2012. Available online: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=B0053AB753520A49E05397BE0A0A3E76 (accessed on 25 December 2024).
- NY/T 88-1988; Method for Determination of Soil Total Phosphorus. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 1988. Available online: https://www.biaozhuns.com/archives/20161102/show-155996-51-1.html (accessed on 25 December 2024).
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ): Beijing, China, 2002. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200307/t20030701_66529.shtml (accessed on 25 December 2024).
- GB/T 25499-2010; The Reuse of Urban Recycling Water—Water Quality Standard for Green Space Irrigation. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ): Beijing, China, 2010. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7D795D3A7E05397BE0A0AB82A (accessed on 25 December 2024).
- GB6920-86; Water Quality—Determination of pH Value—Glass Electrode Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1986. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/198703/t19870301_66620.shtml (accessed on 25 December 2024).
- HJ 636—2012; Water Quality—Determination of Total Nitrogen—Alkaline Potassium Persulfate Digestion-UV Spectro Photo Metric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2012. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120307_224383.shtml (accessed on 25 December 2024).
- GB 11893-89; Water Quality—Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1889. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/199007/t19900701_67131.shtml (accessed on 25 December 2024).
- HJ 537-2009; Water Quality―Determination of Ammonia Nitrogen―Distillation-Neutralization Titration. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2009. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201001/t20100112_184161.shtml (accessed on 25 December 2024).
- GB 11896-89; Water Quality—Determination of Chloride-Silver Nitrate Titration Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1989. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/199007/t19900701_67145.shtml (accessed on 25 December 2024).
- GB/T 5750.4-2023; Standard Examination Methods for Drinking Water—Part 4: Organoleptic and Physical Indices. State Administration for Market Regulation: Beijing, China, 2023. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=F78920660F96B223E05397BE0A0AE533 (accessed on 25 December 2024).
- Habel, S.; Fletcher, C.H.; Barbee, M.M.; Fornace, K.L. Hidden Threat: The Influence of Sea-Level Rise on Coastal Groundwater and the Convergence of Impacts on Municipal Infrastructure. Annu. Rev. Mar. Sci. 2023, 16, 81–103. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). Guidelines for Water-Reuse; EPA: Washington, DC, USA, 2012. [Google Scholar]
- Meena, M.; Yadav, R.K.; Narjary, B.; Yadav, G.; Jat, H.; Sheoran, P.; Meena, M.; Antil, R.; Meena, B.L.; Singh, H.; et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Manag. 2019, 84, 38–53. [Google Scholar] [CrossRef]
- Raveh, E.; BenGal, A. Irrigation with water containing salts: Evidence from a macro-data national case study in Israel. Agric. Water Manag. 2016, 170, 176–179. [Google Scholar] [CrossRef]
- Heidari, A.; Samiei-Fard, R. Geochemical characteristics of saline soils formed during the recent retreat of the Caspian Sea. CATENA 2024, 243, 108208. [Google Scholar] [CrossRef]
- Qian, Y.L.; Lin, Y.H. Comparison of Soil Chemical Properties Prior to and Five to Eleven Years after Recycled Water Irrigation. J. Environ. Qual. 2019, 48, 1758–1765. [Google Scholar] [CrossRef]
- Singh, K. Microbial and Enzyme Activities of Saline and Sodic Soils. Land Degrad. Dev. 2016, 27, 706–718. [Google Scholar] [CrossRef]
- Muyen, Z.; Moore, G.A.; Wrigley, R.J. Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agric. Water Manag. 2011, 99, 33–41. [Google Scholar] [CrossRef]
- Bekir, S.; Zoghlami, R.I.; Boudabbous, K.; Khelil, M.N.; Moussa, M.; Ghrib, R.; Nahdi, O.; Trabelsi, E.; Bousnina, H. Soil Physicochemical Changes as Modulated by Treated Wastewater after Medium-and Long-Term Irrigations: A Case Study from Tunisia. Agriculture 2022, 12, 2139. [Google Scholar] [CrossRef]
- Azouzi, R.; Charef, A.; Zaghdoudi, S.; Khadhar, S.; Shabou, N.; Boughanmi, H.; Hjiri, B.; Hajjaj, S. Effect of long-term irrigation with treated wastewater of three soil types on their bulk densities, chemical properties and PAHs content in semi-arid climate. Arab. J. Geosci. 2015, 9, 3. [Google Scholar] [CrossRef]
- Bailey, R.T.; Tavakoli-Kivi, S.; Wei, X.L. A salinity module for SWAT to simulate salt ion fate and transport at the watershed scale. Hydrol. Earth Syst. Sci. 2019, 23, 3155–3174. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Hanati, G.; Danierhan, S.; Liu, G.M.; Zhang, Y.; Zhang, Z.P. Identifying Seasonal Accumulation of Soil Salinity with Three-Dimensional Mapping—A Case Study in Cold and Semiarid Irrigated Fields. Sustainability 2020, 12, 6645. [Google Scholar] [CrossRef]
- Phogat, V.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Pitt, T.; Petrie, P.R. Impact of long-term recycled water irrigation on crop yield and soil chemical properties. Agric. Water Manag. 2020, 237, 106167. [Google Scholar] [CrossRef]
- Panini, T.; Torri, D.; Pellegrini, S.; Pagliai, M.; Sanchis, M.P.S. A theoretical approach to soil porosity and sealing development using simulated rainstorms. CATENA 1997, 31, 199–218. [Google Scholar] [CrossRef]
- Lowry, D.B.; Hall, M.C.; Salt, D.E.; Willis, J.H. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New Phytol. 2009, 183, 776–788. [Google Scholar] [CrossRef]
- Farieri, E.; Toscano, S.; Ferrante, A.; Romano, D. Identification of ornamental shrubs tolerant to saline aerosol for coastal urban and peri-urban greening. Urban For. Urban Green. 2016, 18, 9–18. [Google Scholar] [CrossRef]
- Hu, Y.C.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Zhang, W.W.; Wang, C.; Xue, R.; Wang, L.J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Wang, J.; Lin, C.Y.; Han, Z.M.; Fu, C.B.; Huang, D.; Cheng, H.G. Dissolved nitrogen in salt-affected soils reclaimed by planting rice: How is it influenced by soil physicochemical properties? Sci. Total Environ. 2022, 824, 153863. [Google Scholar] [CrossRef]
- Song, Y.Y.; Song, C.C.; Yang, G.S.; Miao, Y.Q.; Wang, J.Y.; Guo, Y.D. Changes in Labile Organic Carbon Fractions and Soil Enzyme Activities after Marshland Reclamation and Restoration in the Sanjiang Plain in Northeast China. Environ. Manag. 2012, 50, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.M.; Zarebanadkouki, M.; Kuzyakov, Y.; Blagodatskaya, E.; Pausch, J.; Razavi, B.S. Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root radius. Soil Biol. Biochem. 2018, 118, 69–78. [Google Scholar] [CrossRef]
- Ai, L.; Wu, F.Z.; Fan, X.; Yang, Y.; Zhang, Y.; Zheng, X.; Zhu, J.; Ni, X. Different effects of litter and root inputs on soil enzyme activities in terrestrial ecosystems. Appl. Soil Ecol. 2023, 183, 104764. [Google Scholar] [CrossRef]
- Rusan, M.; Hinnawi, S.; Rousan, L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Mola, M.; Kougias, P.G.; Statiris, E.; Papadopoulou, P.; Malamis, S.; Monokrousos, N. Short-term effect of reclaimed water irrigation on soil health, plant growth and the composition of soil microbial communities. Sci. Total Environ. 2024, 949, 175107. [Google Scholar] [CrossRef]
- Dou, C.Y.; Lv, Y.P.; Sun, Y.D.; Chen, X.P.; Li, Y. Assessment of Soil Enzyme Activities in Plant Root Zone of Saline Soil Reclaimed by Drip Irrigation with Saline Groundwater. Agronomy 2024, 14, 1416. [Google Scholar] [CrossRef]
- Lyu, S.; Wu, L.; Wen, X.; Wang, J.; Chen, W. Effects of reclaimed wastewater irrigation on soil-crop systems in China: A review. Sci. Total Environ. 2021, 813, 152531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Parameters | Unit | RW | n |
---|---|---|---|
pH | - | 6.96 ± 0.29 | 414 |
Total dissolved solids | mg·L−1 | 1788.0 ± 755.5 | 52 |
Chloride | mg·L−1 | 909.3 ± 354.3 | 402 |
Total nitrogen | mg·L−1 | 8.81 ± 1.61 | 414 |
Total phosphorus | mg·L−1 | 0.16 ± 0.07 | 414 |
Ammonia nitrogen | mg·L−1 | 0.22 ± 0.31 | 414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xiao, J.; Lei, Y.; Qin, D.; Cai, W.; Chen, X.; Ma, C.; Zhu, X.; Zhang, S.; Sun, Q. Impacts of Reclaimed Water Irrigation on Soil Salinity, Nutrient Cycling, and Landscape Plant Growth in a Coastal Monsoon Environment. Water 2025, 17, 337. https://doi.org/10.3390/w17030337
Li Y, Xiao J, Lei Y, Qin D, Cai W, Chen X, Ma C, Zhu X, Zhang S, Sun Q. Impacts of Reclaimed Water Irrigation on Soil Salinity, Nutrient Cycling, and Landscape Plant Growth in a Coastal Monsoon Environment. Water. 2025; 17(3):337. https://doi.org/10.3390/w17030337
Chicago/Turabian StyleLi, Yikun, Jin Xiao, Yu Lei, Dan Qin, Wanqiang Cai, Xiangqiang Chen, Cong Ma, Xiaoyu Zhu, Shenghua Zhang, and Qian Sun. 2025. "Impacts of Reclaimed Water Irrigation on Soil Salinity, Nutrient Cycling, and Landscape Plant Growth in a Coastal Monsoon Environment" Water 17, no. 3: 337. https://doi.org/10.3390/w17030337
APA StyleLi, Y., Xiao, J., Lei, Y., Qin, D., Cai, W., Chen, X., Ma, C., Zhu, X., Zhang, S., & Sun, Q. (2025). Impacts of Reclaimed Water Irrigation on Soil Salinity, Nutrient Cycling, and Landscape Plant Growth in a Coastal Monsoon Environment. Water, 17(3), 337. https://doi.org/10.3390/w17030337