Macrophytes and Phytoplankton, Two Primary Antithetical Producers in Degraded Water Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sampling
2.2.1. Macrophytes
2.2.2. Environmental Parameters
2.2.3. Ecological Status Determination
2.2.4. Statistical Analyses
3. Results
3.1. Macrophytes
3.2. Environmental Parameters
3.3. Ecological Status Assessment
3.4. Statistical Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sorokin, Y.I.; Zakuskina, O.Y. Features of the Comacchio Ecosystem transformed during persistent bloom of picocyanobacteria. J. Oceanogr. 2010, 66, 373–387. [Google Scholar] [CrossRef]
- Pulina, S.; Padedda, B.M.; Sechi, N.; Lugliè, A. The dominance of cyanobacteria in Mediterranean hypereutrophic lagoons: A case study of Cabras Lagoon (Sardinia, Italy). Sci. Mar. 2011, 75, 111–120. [Google Scholar] [CrossRef]
- Cook, P.L.M.; Jennings, M.; Holland, D.P.; Beardall, J.; Briles, C.; Zawadzki, A.; Doan, P.; Mills, K.; Gel, P. Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement. Biogeosciences 2016, 13, 3677–3686. [Google Scholar] [CrossRef]
- Collos, Y.; Jauzein, C.; Ratmaya, W.; Souchu, P.; Abadie, E.; Vaquer, A. Comparing diatom and Alexandrium catenella/tamarense blooms in Thau lagoon: Importance of dissolved organic nitrogen in seasonally N-limited systems. Harmful Algae 2014, 37, 84–91. [Google Scholar] [CrossRef]
- Pernet, F.; Malet, N.; Pastoureaud, A.; Vaquer, A.; Quere, C.; Dubroca, L. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J. Sea Res. 2012, 68, 20–32. [Google Scholar] [CrossRef]
- Phlips, E.J.; Badylak, S.; Youn, S.; Kelley, K. The occurrence of potentially toxic dinoflagellates and diatoms in a subtropical lagoon, the Indian River Lagoon, Florida, USA. Harmful Algae 2004, 3, 39–49. [Google Scholar] [CrossRef]
- Sorokin, Y.I.; Sorokin, P.Y.; Ravagnan, G. On an extremely dense bloom of the dinoflagellate Alexandrium tamarense in lagoons of the Po river delta: Impact on the environment. J. Sea Res. 1996, 35, 251–255. [Google Scholar] [CrossRef]
- Pinckney, J.L.; Tomas, C.; Greenfield, D.I.; Reale-Munroe, K.; Castillo, B.; Hillis-Starr, Z.; Van Meerssche, E.; Zimberlin, M. Seasonal changes in phytoplankton community structure in a bioluminescent lagoon, St. Croix, US Virgin Islands. Aquat. Microb. Ecol. 2018, 81, 109–124. [Google Scholar] [CrossRef]
- Cloern, J.E.; Foster, S.Q.; Kleckner, A.E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 2014, 11, 2477–2501. [Google Scholar] [CrossRef]
- Morand, P.; Briand, X. Excessive Growth of Macroalgae: A Symptom of Environmental Disturbance. Bot. Mar. 1996, 39, 491–516. [Google Scholar] [CrossRef]
- Sfriso, A.; Curiel, D.; Rismondo, A. The Venice Lagoon. In Flora and Vegetation of the Italian Transitional Water Systems; Cecere, E., Petrocelli, A., Izzo, G., Sfriso, A., Eds.; CoRiLa, Multigraf: Spinea, Italy, 2009; pp. 17–80. [Google Scholar]
- Sfriso, A.A.; Sfriso, A. In situ biomass production of Gracilariaceae and Ulva rigida: The Venice Lagoon as study case. Bot. Mar. 2017, 60, 271–283. [Google Scholar] [CrossRef]
- Sfriso, A.; Wolf, M.A.; Maistro, S.; Sciuto, K.; Moro, I. Spreading and autecology of the invasive species Gracilaria vermiculophylla Gracilariales, Rhodophyta) in the lagoons of the north-western Adriatic Sea (Mediterranean Sea, Italy). Estuar. Coast. Shelf Sci. 2012, 114, 192–198. [Google Scholar] [CrossRef]
- Mellors, J.E. An evaluation of a rapid visual technique for estimating seagrass biomass. Aquat. Bot. 1991, 42, 67–73. [Google Scholar] [CrossRef]
- Sfriso, A.; Facca, C.; Bonometto, A.; Boscolo, R. Compliance of the Macrophyte Quality index (MaQI) with the WFD (2000/60/EC) and ecological status assessment in transitional areas: The Venice lagoon as study case. Ecol. Indic. 2014, 46, 536–547. [Google Scholar] [CrossRef]
- Sfriso, A.; Raccanelli, S.; Pavoni, B.; Marcomini, A. Sampling strategies for measuring macroalgal biomass in the shallow waters of the Venice lagoon. Environ. Technol. 1991, 12, 263–269. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, University of Galway. 2024. Available online: https://www.algaebase.org (accessed on 22 January 2025).
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed; American Public Health Association, American Water Works Association, Water Environment Federation: Denver, CO, USA, 2017. [Google Scholar]
- Oxner, M. The Determination of Chlorinity by the Knudsen Method and Hydrographical Tables; G.M. Manufacturing Co.: New York, NY, USA, 2008; p. 63. [Google Scholar]
- Aspila, K.; Agemian, H.; Chair, A.S.J. A semi-automated method for the determination of inorganic, organic and total phosphorus in sediments. Analyst 1976, 101, 187–197. [Google Scholar] [CrossRef]
- Schumacher, B.A. Method for the Determination of Total Organic Carbon (TOC) in Soil and Sediment; Ecological Risk Assessment Support Center, Office of Research and Development, US Environmental Protection Agency: Las Vegas, NV, USA, 2002; pp. 1–2.
- Kristensen, E.; Andersen, F. Determination of organic carbon in marine sediments: A comparison of two CHN analyzer methods. J. Exp. Mar. Biol. Ecol. 1987, 109, 15–23. [Google Scholar] [CrossRef]
- Sfriso, A.; Buosi, A.; Juhmani, A.-S.; Tomio, Y.; Mistri, M.; Munari, C.; Sfriso, A.A. Sedimentation rates: Anthropogenic Impacts and Environmental Changes in Transitional Water Systems. Water 2022, 14, 3843. [Google Scholar] [CrossRef]
- Sfriso, A.; Facca, C.; Bon, D.; Buosi, A. Macrophytes and ecological status assessment in the Po delta transitional systems, Adriatic Sea (Italy). Application of Macrophyte Quality Index (MaQI). Acta Adriat. 2016, 57, 209–226. Available online: https://acta.izor.hr/ojs/index.php/acta/article/view/429 (accessed on 22 January 2025).
- Orfanidis, S.; Laugier, T.; Derolez, V.; Sfriso, A.; Perez, M.; Bonne, W.; Zampoukas, N. Technical Report Transitional Water Mediterranean Sea GIG: Macroalgae and Angiosperms; European Commission: Brussels, Belgium, 2012; p. 17. [Google Scholar]
- Ferrari, C.; Pirola, A.; Piccoli, F. Ricerche idrobiologiche nelle Valli di Comacchio. II. Saggio cartografico della vegetazione delle Valli di Comacchio. Ann. Univ. Ferrara N. S. Sez. Ecol. 1972, 1, 35–54. [Google Scholar]
- Giaccone, G. Lineamenti della vegetazione lagunare dell’alto Adriatico ed evoluzione in conseguenza dell’inquinamento. Boll. Mus. Civ. St. Nat. Venezia 1974, 26, 87–98. [Google Scholar]
- Giaccone, G.; Piccoli, F. Ricerche idrobiologiche nelle valli di Comacchio. III: Contributo alla conoscenza della flora sommersa delle Valli di Comacchio. Ann. Univ. Ferrara N. S. Sez. Ecol. 1974, 55–69. [Google Scholar]
- Castaldelli, G.; Rossi, R.; Fano, E.A. Variazioni spaziali e temporali dei parametri idrogeochimici e della biomassa algale nel bacino lagunare valle Fattibello–Spavola. Laguna 1999, 5, 10–17. [Google Scholar]
- Pellizzari, M.; Naldi, M.; Castaldelli, G.; Ghion, F.; Manfredini, E.; Piccoli, F.; Viaroli, P. Salt and brackish lagoons of the southern Po Delta. In Flora and Vegetation of the Italian Transitional Water Systems; Cecere, E., Petrocelli, A., Izzo, G., Sfriso, A., Eds.; Corila, Multigraf: Spinea, Italy, 2009; pp. 81–102. [Google Scholar]
- Bellini, A. Expériences sur l’élevage de l’anguille en stabulation à Comacchio. Bull. Soc. Centr. Aquicult. Peche 1907, 4–10, 1–40. [Google Scholar]
- Corbetta, F. Flora e vegetazione delle zone umide salmastre dell’Emilia-Romagna. In Aspetti Naturalistici Delle Zone Umide Salmastre Dell’emilia-Romagna; Assessorato. Ambiente e Difesa del Suolo, Regione Emilia-Romagna: Bologna, Italy, 1990; p. 274. [Google Scholar]
- Anonymous. Sperimentazione di Interventi Rivolti alla Riossidazione di Sedimenti Riducenti e al Reimpianto di Vegetazione Autoctona in Piccole Valli da Pesca Soggette a un Forte Carico Inquinante; Relazione Finale; Dip. di Biologia, Università di Ferrara: Ferrara, Italy, 1997. [Google Scholar]
- Piccoli, F. Passato e presente della vegetazione delle Valli di Comacchio. Laguna 1998, 5, 24–27. [Google Scholar]
- Piccoli, F.; Corticelli, S.; Dell’Aquila, L.; Merloni, N.; Pellizzari, M. Vegetation map of the Regional Park of the Po Delta (Emilia-Romagna Region). Allionia 1996, 34, 325–331. [Google Scholar]
- Piccoli, F.; Merloni, N.; Pellizzari, M. The vegetation of the Comacchio Saltern (Northern Adriatic coast—Italy). Ecol. Mediterr. 1994, 20, 85–94. [Google Scholar] [CrossRef]
- Anonymous. Una Nuova Natura per la Salina di Comacchio. Progetto LIFE00NAT/IT/7215—Comacchio (Ecological Restoration and Conservation of Habitats in the Saltwork of the SIC Valli di Comacchio (2002–2005)); Studio Terranova: Modena, Italy, 2006; p. 160. [Google Scholar]
- Azzoni, R.; Giordani, G.; Bartoli, M.; Welsh, D.T.; Viaroli, P. Iron, sulphur and phosphorus cycling in the rhizosphere sediments of a eutrophic Ruppia cirrhosa meadow (Valle Smarlacca, Italy). J. Sea Res. 2001, 45, 15–26. [Google Scholar] [CrossRef]
- Corbetta, F.; Pirone, G. Analisi comparativa della vegetazione delle lagune della costa adriatica e dell’arco jonico pugliese-lucano. Attuale situazione conservazionistica. In Aspetti Ecologici e Naturalistici dei Sistemi Lagunari e Costieri; Bollettino del Museo civico di Storia Naturale di Venezia; Bon, M., Sburlino, G., Zuccarello, V., Eds.; Arsenale Editrice: Venezia, Italy, 1999; Volume 49, pp. 135–146. [Google Scholar]
- Piccoli, F.; Dell’Aquila, L.; Pellizzari, M. Carta della Vegetazione del Parco Regionale del Delta del Po, Scala 1:35.000. 11.1. Stazione Volano–Mesola-Goro; Regione Emilia-Romagna, Servizio Cartografico e Geologico: Bologna, Italy, 1999. [Google Scholar]
- Piccoli, F.; Pellizzari, M.; Dell’Aquila, L. Carta della Vegetazione del Parco Regionale del Delta del Po, Scala 1:35.000. 11.5. Stazioni Centro Storico e Valli di Comacchio; Regione Emilia-Romagna, Servizio Cartografico e Geologico: Bologna, Italy, 1999. [Google Scholar]
- ISPRA (Istituto Superiore per la Prevenzione e Ricerca Ambientale). Implementazione della Direttiva 2000/60/CE. Linea Guida per L’applicazione del Macrophyte Quality Index (MaQI); ISPRA: Rimini, Italy, 2014; pp. 1–30.
- Mistri, M.; Fano, E.A.; Rossi, G.; Caselli, K.; Rossi, R. Variability in macrobenthos communities in the Valli di Comacchio, northern Italy, a hypereutrophized lagoonal ecosystem. Estuar. Coast. Shelf Sci. 2000, 51, 599–611. [Google Scholar] [CrossRef]
- Sfriso, A.; Facca, C. Primi risultati dei campionamenti di macrofite acquatiche negli ambienti di transizione dell’Emilia-Romagna. In Proceedings of the Italian Botanical Society, Phycology Group, Annual Scientific Meeting, Taranto, Italy, 6–7 November 2009. [Google Scholar]
- Smith, D.W.; Horne, A.J. Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California. Hydrobiologia 1988, 159, 259–268. [Google Scholar] [CrossRef]
- Fong, P.; Donohoe, R.M.; Zedler, J.B. Competition with macroalgae and benthic cyanobacterial mats limits. Mar. Ecol. Prog. Ser. 1993, 100, 97–102. [Google Scholar] [CrossRef]
- Sfriso, A.; Pavoni, B. Macroalgae and phytoplankton competition in the central Venice Lagoon. Environ. Tech. 1994, 15, 1–14. [Google Scholar] [CrossRef]
- Solidoro, C.; Dejak, C.; Franco, D.; Pastres, R.; Pecenik, G. A model for macroalgae and phytoplankton growth in the Venice Lagoon. Environ. Inter. 1995, 21, 619–62621. [Google Scholar] [CrossRef]
- Sfriso, A. Temporal and spatial responses of Ulva rigida C. Ag. growth to environmental and tissue concentrations of nutrients in the lagoon of Venice. Bot. Mar. 1995, 38, 557–573. [Google Scholar] [CrossRef]
- Wallace, R.B.; Gobler, C.J. Factors Controlling Blooms of Microalgae and Macroalgae (Ulva rigida) in a Eutrophic, Urban Estuary: Jamaica Bay, NY, USA. Estuar. Coast. 2015, 38, 519–533. [Google Scholar] [CrossRef]
- Conley, D.J.; Malone, T.C. Annual cycle of dissolved silicate in Chesapeake Bay—Implications for the production and fate of phytoplankton biomass. Mar. Ecol. Prog. Ser. 1992, 81, 121–128. [Google Scholar] [CrossRef]
- Zhong, T.; Gobler, C.J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 2011, 10, 480–488. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C.; Tang, D.; Tian, L.; Tang, S.; Wang, X.H.; Lou, M.; Gao, X. World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations. Remote Sens. 2015, 7, 12297–12313. [Google Scholar] [CrossRef]
Macroalgal Frequency | Months | |||||
---|---|---|---|---|---|---|
Caleri | Barbamarco | Goro | Fattibello | Total | ||
N° | Taxa | 12 | 12 | 12 | 12 | 48 |
1 | Gracilaria vermiculophylla (Ohmi) Papenfuss | 7 | 8 | 11 | 9 | 35 |
2 | Ulva australis Areschoug | 5 | 8 | 10 | 10 | 33 |
3 | Blidingia dowsonii (Hollenberg & I.A. Abbott) S.C. Lindstrom et al. | 8 | 8 | 8 | 4 | 28 |
4 | Gracilariopsis longissima (S.G. Gmelin) Steentoft et al. | 11 | 6 | 8 | 2 | 27 |
5 | Agardhiella subulata (C. Agardh) Kraft et M.J. Wynne | 7 | - | 7 | 3 | 17 |
6 | Solieria filiformis (Kützing) P.W. Gabrielson | 3 | 6 | 4 | 4 | 17 |
7 | Uronema marinum Womersley | 3 | 8 | 4 | 1 | 16 |
8 | Ulva polyclada Kraft | 4 | 4 | 2 | 2 | 12 |
9 | Ulva rigida C. Agardh | 7 | 3 | 2 | - | 12 |
10 | Polysiphonia morrowii Harvey | 5 | 2 | 1 | 3 | 11 |
11 | Ulvella viridis (Reinke) R. Nielsen, C.J. O’Kelly, & B. Wysor | 3 | 5 | - | - | 8 |
12 | Cladophora glomerata (Linnaeus) Kützing | 3 | 1 | 2 | - | 6 |
13 | Ulva prolifera O.F. Müller | 1 | 1 | - | 4 | 6 |
14 | Chondria capillaris (Hudson) M. J. Wynne | 2 | 4 | - | - | 6 |
15 | Erythrotrichia carnea (Dillwyn) J. Agardh | 3 | 3 | - | - | 6 |
16 | Hypnea cervicornis J. Agardh | 3 | - | 3 | - | 6 |
17 | Radicilingua mediterranea Wolf, Sciuto, & Sfriso | 6 | - | - | - | 6 |
18 | Cladophora albida (Nees) Kutzing | - | 4 | - | 1 | 5 |
19 | Ulva compressa Linnaeus | 2 | 2 | - | 2 | 6 |
20 | Acanthosiphonia echinata (Harvey) Savoie & G.W. Saunders | 2 | 3 | - | - | 5 |
21 | Caulacanthus okamurae Yamada | 4 | 1 | - | - | 5 |
22 | Gracilaria bursa-pastoris (S.G.Gmelin) P.C. Silva | 2 | 3 | - | - | 5 |
23 | Gracilaria gracilis (S. G. Gmelin) Steentoft et al. | 1 | 4 | - | - | 5 |
24 | Melanothamnus japonicus (Harvey) Díaz-Tapia & Maggs | 1 | - | 1 | 3 | 5 |
25 | Cladophora sericea (Hudson) Kützing | 1 | - | - | 3 | 4 |
26 | Alsidium corallinum C. Agardh | 4 | - | - | - | 4 |
27 | Carradoriella elongella (Harvey) Savoie & G.W. Saunders | 3 | 1 | - | - | 4 |
28 | Dasya punicea (Zanardini) Meneghini | 4 | - | - | - | 4 |
29 | Chaetomorpha ligustica (Kützing) Kützing | - | 3 | - | - | 3 |
30 | Cladophora lehmanniana (Lindenberg) Kützing | - | - | 1 | 2 | 3 |
31 | Ulva flexuosa Wulfen | 1 | - | - | 2 | 3 |
32 | Dasya pedicellata (C. Agardh) C. Agardh | - | - | - | 3 | 3 |
33 | Dictyota linearis (C. Agardh) Greville | 3 | - | - | - | 3 |
34 | Ectocarpus siliculosus var. arctus (Kützing) Gallardo | 1 | 2 | - | - | 3 |
35 | Blidingia minima (Nägeli ex Kützing) Kylin | - | 2 | - | - | 2 |
36 | Bryopsis hypnoides J.V. Lamouroux | 1 | 1 | - | - | 2 |
37 | Ulothrix implexa (Kützing) Kützing | 2 | - | - | - | 2 |
38 | Ulva intestinalis Linnaeus | - | 1 | 1 | - | 2 |
39 | Ulva pilifera (Kützing) Škaloud & Leliaert | 2 | - | - | - | 2 |
40 | Callithamnion corymbosum (Smith) Lyngbye | 2 | - | - | - | 2 |
41 | Ceramium polyceras (Kützing) Zanardini | 2 | - | - | - | 2 |
42 | Kapraunia schneideri (Stuercke & Freshwater) Savoie & G.W. Saunders | 2 | - | - | - | 2 |
43 | Sahlingia subintegra (Rosenvinge) Kornmann | 1 | - | 1 | - | 2 |
44 | Ectocarpus siliculosus (Dillwyn) Lyngbye | 1 | 1 | - | - | 2 |
45 | Kuckuckia spinosa (Kützing) Kornmann | - | - | - | 2 | 2 |
46 | Myrionema orbiculare J. Agardh | - | - | - | 2 | 2 |
47 | Blidingia ramifera (Bliding) Garbary & L.B. Barkhouse | - | - | - | 1 | 1 |
48 | Bolbocoleon piliferum Pringsheim | - | 1 | - | - | 1 |
49 | Chaetomorpha aerea (Dillwyn) Kützing | - | 1 | - | - | 1 |
50 | Chaetomorpha gracilis Kützing | - | - | - | 1 | 1 |
51 | Cladophora dalmatica Kützing | 1 | - | - | - | 1 |
52 | Derbesia tenuissima (Moris et De Notaris) P. et H. Crouan | 1 | - | - | - | 1 |
53 | Ulva linza Linnaeus | - | - | - | 1 | 1 |
54 | Ulvella leptochaete (Huber) R. Nielsen et al. | - | 1 | - | - | 1 |
55 | Antithamnion nipponicum Yamada & Inagaki | 1 | - | - | - | 1 |
56 | Bangia fuscopurpurea (Dillwyn) Lyngbye | 1 | - | - | - | 1 |
57 | Bostrychia scorpioides (Hudson) Montagne | - | - | - | 1 | 1 |
58 | Catenella caespitosa (Withering) L.M. Irvine | - | - | - | 1 | 1 |
59 | Ceramium cimbricum H.E. Petersen | - | 1 | - | - | 1 |
60 | Centroceras gasparrinii subsp. minus Wolf, Buosi, Juhmani & Sfriso | 1 | - | - | - | 1 |
61 | Erythrocladia irregularis Rosenvinge | 1 | - | - | - | 1 |
62 | Neopyropia elongata (Kylin) L.-E. Yang & J. Brodie | - | 1 | - | - | 1 |
63 | Spyridia filamentosa (Wulfen) Harvey | 1 | - | - | - | 1 |
64 | Stylonema alsidii (Zanardini) K.M. Drew | - | 1 | - | - | 1 |
65 | Acinetospora crinita (Carmichael) Sauvageau | 1 | - | - | - | 1 |
66 | Gongolaria barbata f. aurantia (Kützing) Falace, Alongi & Kaleb | 1 | - | - | - | 1 |
67 | Scytosiphon dotyi M.J. Wynne | 1 | - | - | - | 1 |
MaQI | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lagoons | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Ecological Status |
Ecological Quality Ratio (EQR) | |||||||||||||
Goro | 0.25 | 0.25 | 0.25 | 0.35 | 0.25 | 0.25 | 0.25 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | Poor |
Barbamarco | 0.35 | 0.35 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.35 | 0.25 | 0.25 | 0.25 | 0.25 | Poor |
Fattibello | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | Bad |
Caleri | 0.35 | 0.35 | 0.25 | 0.25 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.65 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfriso, A.; Buosi, A.; Silan, G.; Mistri, M.; Munari, C.; Sfriso, A.A. Macrophytes and Phytoplankton, Two Primary Antithetical Producers in Degraded Water Systems. Water 2025, 17, 338. https://doi.org/10.3390/w17030338
Sfriso A, Buosi A, Silan G, Mistri M, Munari C, Sfriso AA. Macrophytes and Phytoplankton, Two Primary Antithetical Producers in Degraded Water Systems. Water. 2025; 17(3):338. https://doi.org/10.3390/w17030338
Chicago/Turabian StyleSfriso, Adriano, Alessandro Buosi, Giulia Silan, Michele Mistri, Cristina Munari, and Andrea Augusto Sfriso. 2025. "Macrophytes and Phytoplankton, Two Primary Antithetical Producers in Degraded Water Systems" Water 17, no. 3: 338. https://doi.org/10.3390/w17030338
APA StyleSfriso, A., Buosi, A., Silan, G., Mistri, M., Munari, C., & Sfriso, A. A. (2025). Macrophytes and Phytoplankton, Two Primary Antithetical Producers in Degraded Water Systems. Water, 17(3), 338. https://doi.org/10.3390/w17030338