Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change
Abstract
:1. Introduction
2. Study Area
2.1. Geological Context, Aquifer Geometry and Springs
- Small Zaghouan which gives birth to Ain Haroun.
- Transmission station massifs, Kef El Orma, Kef El Blidah and Jebel Stâa; they are the most extensive compartment, which give rise to the most important springs including Water temple (Nymphée), Aïn Ayed and Aïn Oued El Guelb.
- The great peak massif which gives birth to the source of Sidi Medina.
2.2. Water Resources
3. Materials and Methods
3.1. Historical Data Processing
3.1.1. Discharge Flows
3.1.2. Precipitations
3.1.3. Evapotranspiration
3.2. Geochemical and Isotopic Analysis and Methods
- From mid-April 2021 to mid-July 2021 at the Temple borehole
- From early October 2021 to October 2022 (at the Ain Ayed 3bis borehole) for the latter have been analyzed for the moment only samples until mid-April 2022.
3.3. Recharge Estimation: APLIS Method
3.4. Water Budget Estimation, Trend and Uncertainties
3.5. Comprehension of Groundwater Behavior to Drought Conditions
3.6. Vulnerability Mapping Using COP
4. Results
4.1. Water Availability
- The natural discharge that is produced through the galleries nearly stopped in 2015.
- The static level follows a continuous declining trend since 2002 with an expectation of a slight rise recorded in 2012 following a snow event. Indeed, the recorded groundwater level dropped from −0.7 m (2002) to more than −100 m (2022) (below soil level), the total depth of the piezometer being surpassed making it dysfunctional. The continuous depletion of the groundwater seems to be mainly linked to overexploitation (due to urban expansion) than a state of meteorological drought.
4.2. Recharge Estimation
4.3. Water Quality Isotopes and Geochemical Processes
4.3.1. Water Types and Saturation Indices
- Calcium sulfate water: This is the predominant facies, represented by five groundwater samples from boreholes of the Jebel Zaghouan aquifer (Pristine, Ain Ayed 3 bis, Temple, Ecomusée and Cristaline). The facies results from the presence in the carbonate rocks of some evaporitic minerals (gypsum) easier to be dissolved than carbonates
- Calcium bicarbonate water: This facies is less common, represented by a single sample from the natural spring of Sidi Medien.
4.3.2. Results for Stable Isotopes
4.3.3. Dating
- Results for Tritium (3H)
- Results for Carbon-14
4.4. Vulnerability Mapping and Nitrates
4.4.1. COP Map
4.4.2. Nitrates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
(mg/L) | Saturation Indices | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Well/Spring | T °C | pH | EC (µS/cm) | Ca | Mg | Na | K | HCO3 | Cl | SO4 | NO3 | Is Calcite | Is Dolomite | Is Gypse | Is Anhydrite |
Pristine | 22.3 | 7.22 | 1244 | 175 | 27 | 40 | 0.98 | 216 | 59 | 317 | 5.7 | 0.28 | 0.09 | −0.65 | −0.87 |
Sidi Medien | 22 | 7.23 | 518 | 77 | 13 | 21 | 2.4 | 192 | 38 | 38 | 19 | −0.03 | −0.49 | −1.82 | −2.04 |
Aïn Ayed 3 bis | 21.8 | 7.99 | 1092 | 161 | 32 | 50 | 1.15 | 188 | 66 | 386 | 3.8 | 0.94 | 1.54 | −0.61 | −0.83 |
Temple | 25 | 7.6 | 1178 | 163 | 31 | 70 | 1.06 | 193 | 91 | 380 | 2.9 | 0.57 | 0.76 | −0.62 | −0.84 |
Ecomusée | 21.7 | 7.76 | 1091 | 167 | 32 | 43 | 1.13 | 163 | 63 | 409 | 2.5 | 0.66 | 0.97 | −0.57 | −0.79 |
Cristalline | 22.2 | 7.45 | 924 | 137 | 28 | 41 | 1.07 | 236 | 65 | 227 | 3.4 | 0.46 | 0.58 | −0.88 | −1.1 |
Appendix B
Appendix B.1. APLIS Method
- A = altitude, P = slope, L = lithology, I = infiltration landforms, S = soil type.
Appendix B.2. COP Method
Appendix B.2.1. The Overlying Layers: O Factor
Lithology | Nomenclature in the Pedology Map | Value ly | Value cn |
---|---|---|---|
Marls | 102 | 1000 | 1.5 |
Non fissure limestones rocks | 105 | 1000 | 1.5 |
Sands and gravels | 108 | 10 | 1.5 |
limestones encrustation | 119 | 500 | 1.5 |
Gravels | 120 | 30 | 1.5 |
Gravels | 122 | 30 | 1.5 |
Fissured carbonated rocks | 102,105 | 3 | 1.5 |
Appendix B.2.2. The Concentration of Flow: C Factor
- Scenario 1 involves a karstic catchment with limited protection against rapid infiltration. Concentrated surface runoff near the base of slopes or quick infiltration through swallow holes are the main sources of recharge. The Jebel Zaghouan case study was analyzed to gather information about potential sinkholes or swallow holes using inquiries with the water authority and a local speleology expert from the AREZ association (https://arez.tn/, accessed on 6 February 2023). However, it was found that the caves and holes, when placed within the hydrological network did not seem clearly connected to rapid groundwater infiltration. Tracer tests could not be performed due to the drought of groundwater, so scenario 1 was not considered. Further field and remote sensing investigations are required to identify these infiltration regions and mechanisms.
- Scenario 2 is different from the focused recharge through swallow holes and occurs in the zone of rest for autogenic recharge. The C factor is comprised of three variables: surface features (sf), slope (s), and vegetation (v). In this context, the sv factor is considered in contrast to scenario 1.
Appendix B.2.3. Slope and Vegetation
Appendix B.2.4. Surface Features
Appendix B.2.5. The Precipitation Factor: P
Meteorological Station | Wet Years’ Mean Annual Precipitation (mm) | Altitude (m) |
---|---|---|
Zaghouan PF | 783 | 130 |
Mograne Csa SM | 710 | 151 |
Zaghouan SM | 780 | 165 |
Zaghouan DRE | 790 | 238 |
Zaghouan Contrôle | 785 | 241 |
Zaghouan Sidi Bou Gabrine | 857 | 677 |
Zaghouan Poste Optique | 808 | 945 |
References
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundw. Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef]
- Water Resources Mission Area. Karst Aquifers. Retrieved from USGS, 2021. Available online: https://www.usgs.gov/mission-areas/water-resources/science/karst-aquifers (accessed on 22 January 2023).
- Bakalowicz, M. Karst and karst groundwater resources in the Mediterranean. Environ. Earth Sci. 2015, 74, 5–14. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Nikolaidis, N.P. The response of three Mediterranean karst springs to drought and the impact of climate change. J. Hydrol. 2020, 591, 125296. [Google Scholar] [CrossRef]
- Lai, G.G.; Padedda, B.M.; Ector, L.; Wetzel, C.E.; Lugliè, A.; Cantonati, M. Mediterranean karst springs: Diatom biodiversity hotspots under the pressure of hydrological fluctuation and nutrient enrichment. Plant Biosyst. 2019, 154, 673–684. [Google Scholar] [CrossRef]
- Siegel, L.; Goldscheider, N.; Petitta, M.; Xanke, J.; Andreo, B.; Bakalowicz, M.; Barberá, J.A.; Bouhlila, R.; Burg, A.; Doummar, J.; et al. Distribution, threats and protection of selected karst groundwater-dependent ecosystems in the Mediterranean region. Hydrogeol. J. 2023, 31, 2231–2249. [Google Scholar] [CrossRef]
- Sivelle, V.; Jourde, H.; Bittner, D.; Mazzilli, N.; Tramblay, Y. Assessment of the relative impacts of climate changes and anthropogenic forcing on spring discharge of a Mediterranean karst system. J. Hydrol. 2021, 598, 126396. [Google Scholar] [CrossRef]
- Fathi, S.; Sjåstad Hagen, J.; Haidari, A.H. Synthesizing existing frameworks to identify the potential for managed aquifer recharge in a karstic and semi-arid region using GIS multi-criteria decision analysis. Groundw. Sustain. Dev. 2020, 11, 100390. [Google Scholar] [CrossRef]
- Stevanović, Z.; Marinović, V.; Krstajić, J. CC-PESTO: A novel GIS-based method for assessing the vulnerability of karst groundwater resources to the effects of climate change. Hydrogeol. J. 2021, 29, 159–178. [Google Scholar] [CrossRef]
- Bagherzadeh, S.; Kalantari, N.; Fadaei, N.A.; Derakhshan, Z.; Conti, G.O.; Ferrante, M.; Malekahmadi, R. Groundwater vulnerability assessment in karstic aquifers using COP method. Environ. Sci. Pollut. Res. 2018, 25, 18960–18979. [Google Scholar] [CrossRef] [PubMed]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan groundwater resources and evolution with global climate changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef]
- Ries, F.; Lange, J.; Schmidt, S.; Puhlmann, H.; Sauter, M. Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrol. Earth Syst. Sci. 2015, 19, 1439–1456. [Google Scholar] [CrossRef]
- Valdes-Abellan, J.; Pardo, M.A.; Jodar-Abellan, A.; Pla, C.; Fernandez-Mejuto, M. Climate change impact on karstic aquifer hydrodynamics in southern Europe semi-arid region using the KAGIS model. Sci. Total Environ. 2020, 723, 138110. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Monno, V.; Fidelibus, M.D. Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. Int. J. Disaster Risk Reduct. 2018, 30, 292–305. [Google Scholar] [CrossRef]
- Richts, A.; Vrba, J. Groundwater resources and hydroclimatic extremes: Mapping global groundwater vulnerability to floods and droughts. Environ. Earth Sci. 2016, 75, 926. [Google Scholar] [CrossRef]
- Šariri, S.; Valić, D.; Kralj, T.; Cvetković, Ž.; Mijošek, T.; Redžović, Z.; Karamatić, I.; Marijić, V.F. Long-term and seasonal trends of water parameters in the karst riverine catchment and general literature overview based on CiteSpace. Environ. Sci. Pollut. Res. 2024, 31, 3887–3901. [Google Scholar] [CrossRef]
- Gammoudi, S.; Chkir, N.; Boughattas, N.; Hamdi, M.; Arraouadi, S.; Zouari, K. Assessment of urban groundwater vulnerability in arid areas: Case of Sidi Bouzid aquifer (Central Tunisia). J. Afr. Earth Sci. 2020, 168, 103849. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, L.; Liu, B.; Liu, R.; Xiao, Z. Monitoring the evolution process of karst desertification and quantifying its drivers in the karst area of Southwest China. Environ. Sci. Pollut. Res. 2023, 30, 123259–123273. [Google Scholar] [CrossRef]
- Dar, F.A.; Jeelani, G.; Perrin, J.; Ahmed, S. Groundwater recharge in semi-arid karst context using chloride and stable water isotopes. Groundw. Sustain. Dev. 2021, 14, 100634. [Google Scholar] [CrossRef]
- Goldscheider, N. Overview of methods applied in karst hydrogeology. In Karst Aquifers—Characterization and Engineering; Stevanović, Z., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 127–145. [Google Scholar] [CrossRef]
- Andreo, B.; Carrasco, F.; Durán, J.J.; Jiménez, P.; LaMoreaux, J.W.L. Hydrogeological and Environmental Investigations in Karst Systems; Environmental Earth Sciences; Springer: Berlin, Heidelberg, 2015. [Google Scholar] [CrossRef]
- Redhaounia, B.; Ilondo, B.O.; Gabtni, H.; Khomsi, S.; Bédir, M. Electrical resistivity tomography (ERT) applied to karst carbonate aquifers: Case study from Amdoun, Northwestern Tunisia. Pure Appl. Geophys. 2016, 173, 1289–1303. [Google Scholar] [CrossRef]
- Ayadi, Y.; Mokadem, N.; Besser, H.; Khelifi, F.; Harabi, S.; Hamad, A.; Boyce, A.; Laouar, R.; Hamed, Y. Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in Southern Mediterranean Basin (Teboursouk Area, NW Tunisia). J. Afr. Earth Sci. 2018, 137, 208–217. [Google Scholar] [CrossRef]
- Hamed, Y.; Hadji, R.; Ahmadi, R.; Ayadi, Y.; Shuhab, K.; Pulido-Bosch, A. Hydrogeological investigation of karst aquifers using an integrated geomorphological, geochemical, GIS, and remote sensing techniques (Southern Mediterranean Basin—Tunisia). Environ. Dev. Sustain. 2023, 26, 6943–6975. [Google Scholar] [CrossRef]
- Ascott, M.J.; Macdonald, D.M.J.; Black, E.; Verhoef, A.; Nakohoun, P.; Tirogo, J.; Sandwidi, W.J.P.; Bliefernicht, J.; Sorensen, J.P.R.; Bossa, A.Y. In situ observations and lumped parameter model reconstructions reveal intra-annual to multidecadal variability in groundwater levels in Sub-Saharan Africa. Water Resour. Res. 2020, 56, e2020WR028056. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Lark, R.M.; Taylor, R.G.; Abiye, T.; Fallas, H.C.; Favreau, G.; Goni, I.B.; Kebede, S.; Scanlon, B.; Sorensen, J.P.R.; et al. Mapping groundwater recharge in Africa from ground observations and implications for water security. Environ. Res. Lett. 2021, 16, 034012. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Paris, A.; Sichangi, A.W.; O’loughlin, F.; Papa, F. Water resources in Africa: The role of Earth observation data and hydrodynamic modeling to derive river discharge. Surv. Geophys. 2023, 44, 97–122. [Google Scholar] [CrossRef]
- The KARMA Project. The KARMA project. Retrieved from Karst Aquifer Resources Availability and Quality in the Mediterranean Area, 2023. Available online: http://karma-project.org/ (accessed on 10 March 2023).
- Jemmali, N.; Rddad, L.; Souissi, F.; Carranza, E. The ore genesis of the Jebel Mecella and Sidi Taya F Ba (Zn Pb) Mississippi Valley-type deposits, Fluorite Zaghouan Province, NE Tunisia, in relation to Alpine orogeny: Constraints from geological, sulfur, and lead isotope studies. C. R. Geosci. 2019, 351, 312–320. [Google Scholar] [CrossRef]
- Djebbi, M.; Besbes, M.; Sagna, J.; Rekaya, M. Les sources karstiques de Zaghouan. Recherche d’un operateur pluie-débit. Sci. Tech. Environ. 2001, 13, 125–128. [Google Scholar]
- Andreo, B.; Vías, J.; Durán, J.J.; Jiménez, P.; López-Geta, J.A.; Carrasco, F. Methodology for groundwater recharge assessment in carbonate aquifers: Application to pilot sites in Southern Spain. Hydrogeol. J. 2008, 16, 911–925. [Google Scholar] [CrossRef]
- NASA Shuttle Radar Topography Mission (SRTM). Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography, 2013. Available online: https://doi.org/10.5069/G9445JDF (accessed on 9 January 2023).
- Mtimet, A. Soils of Tunisia. In Soil Resources of Southern and Eastern Mediterranean Countries; Zdruli, P., Steduto, P., Lacirignola, C., Montanarella, L., Eds.; CIHEAM: Bari, Italy, 2001; pp. 243–262, (Options Méditerranéennes: Série B. Etudes et Recherches; n. 34). [Google Scholar]
- Mhimdi, A. Apport de L’imagerie Satellitaire Pour la Détection des Systèmes Karstiques (Les Dolines) Dans la Région de Zaghouan. Master Thesis, Faculté des Sciences de Tunis, University Tunis El Manar, 2020. Available online: http://www.biruni.tn/v-en/library-catalog.php?ei=28 (accessed on 8 January 2023).
- Baillie, I.C. Soil Survey Staff 1999, Soil Taxonomy. Soil Use Manag. 2001, 17, 57–60. [Google Scholar] [CrossRef]
- Sagna, J. Study and Modeling of Zaghouan Karst Sources. Master Thesis, National Engineering School of Tunis, University Tunis El Manar, Tunis, Tunisia, 2000. [Google Scholar]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index (SPEI). J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Bloomfield, J.P.; Marchant, B.P. Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol. Earth Syst. Sci. 2013, 17, 4769–4787. [Google Scholar] [CrossRef]
- Peterson, R.A. Finding optimal normalizing transformations via bestNormalize. R J. 2021, 13, 310–329. [Google Scholar] [CrossRef]
- Peterson, R.A.; Cavanaugh, J.E. Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. J. Appl. Stat. 2020, 47, 13–15, 2312–2327. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, M.; Balacco, G.; Todaro, V.; Alfio, M.R.; Tanda, M.G. Assessing the impact of climate change on a coastal karst aquifer in a semi-arid area. Groundw. Sustain. Dev. 2024, 25, 101131. [Google Scholar] [CrossRef]
- Vías, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F.; Vadillo, I.; Jiménez, P. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 2006, 14, 912–925. [Google Scholar] [CrossRef]
- Daly, D.; Dassargues, A.; Drew, D.; Dunne, S.; Goldscheider, N.; Neale, S.; Zwahlen, F. Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol. J. 2002, 10, 340–345. [Google Scholar] [CrossRef]
- Othman, J. GIS Applications in Karst Hydrogeology: APLIS for Recharge Estimation and COP for Vulnerability Assessment: Application on the Qachqouch Spring Catchment in Lebanon. Master Thesis, Lebanese University-Faculty of Sciences, Beirut, Lebanon, 2021. [Google Scholar]
- Xanke, J.; Goldscheider, N.; Bakalowicz, M.; Barberá, J.A.; Broda, S.; Chen, Z.; Ghanmi, M.; Günther, A.; Hartmann, A.; Jourde, H.; et al. Mediterranean Karst Aquifer Map (MEDKAM), 1:5,000,000. Berlin, Karlsruhe, Paris, 2022. Available online: https://doi.org/10.25928/MEDKAM.1 (accessed on 15 January 2023).
- Cinkus, G.; Mazzilli, N.; Jourde, H. Identification of relevant indicators for the assessment of karst systems hydrological functioning: Proposal of a new classification. J. Hydrol. 2021, 603, 127006. [Google Scholar] [CrossRef]
- Zhou, C.; Nooijen, R.; Kolechkina, A.; Gargouri-Ellouze, E.; Slama, F.; van de Giesen, N. The uncertainty associated with the use of copulas in multivariate analysis. Hydrol. Sci. J. 2023, 68, 2169–2188. [Google Scholar] [CrossRef]
- Mazzilli, N.; Guinot, V.; Jourde, H.; Lecoq, N.; Labat, D.; Arfib, B.; Baudement, C.; Danquigny, C.; Dal Soglio, L.; Bertin, D. KarstMod: A modelling platform for rainfall-discharge analysis and modelling dedicated to karst systems. Environ. Model. Softw. 2019, 122, 103927. [Google Scholar] [CrossRef]
- Slama, F.; Gargouri-Ellouze, E.; Faydi, T.; Cinkus, G.; Jourde, H.; Bouhlila, R. Rainfall-Discharge Modelling of the Djebel Zaghouan Aquifer Using KarstMod. Eurokarst2022, Malaga, Spain, 2022. Available online: https://www.researchgate.net/publication/376140976_Rainfall-discharge_modelling_of_the_Djebel_Zaghouan_aquifer_using_KarstMod (accessed on 5 March 2024).
- Gargouri-Ellouze, E.; Slama, F.; Ouedraogo, T.A.; Bouhlila, R. Statistical Evaluation and ANN Modelling of the Discharge Spring Response for Djebel Zaghouan Karstic Aquifer. Eurokarst2022, Malaga, Spain, 2022. Available online: https://www.eurokarst.org/wp-content/uploads/2022/06/Eurokarst-program-2022_Updated-Thu24.pdf (accessed on 5 March 2024).
- Wang, Z.; Wu, R.; Huang, K.; Qiu, Y.; Li, Z.; Lv, Y.; Wan, J. Structure identification of a karst groundwater system based on high-resolution rainfall-hydrological response characteristics. Environ. Sci. Pollut. Res. 2022, 29, 26922–26935. [Google Scholar] [CrossRef] [PubMed]
- Ravbar, N.; Engelhardt, I.; Goldscheider, N. Anomalous behavior of specific electrical conductivity at a karst spring induced by variable catchment boundaries: The case of the Podstenjšek spring, Slovenia. Hydrol. Process. 2011, 25, 2130–2140. [Google Scholar] [CrossRef]
- Chang, Y.; Hartmann, A.; Liu, L.; Jiang, G.; Wu, J. Identifying more realistic model structures by electrical conductivity observations of the karst spring. Water Resour. Res. 2021, 57, e2020WR028587. [Google Scholar] [CrossRef]
- Karimi, H.; Raeisi, E.; Bakalowicz, M. Characterising the main karst aquifers of the Alvand basin, northwest of Zagros, Iran, by a hydrogeochemical approach. Hydrogeol. J. 2005, 13, 787–799. [Google Scholar] [CrossRef]
- Wu, P.; Tang, C.; Zhu, L.; Liu, C.; Cha, X.; Tao, X. Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China. Hydrol. Process. 2009, 23, 2012–2022. [Google Scholar] [CrossRef]
- Ben Ammar, S.; Taupin, J.D.; Ben Alaya, M.; Zouari, K.; Nicolas, P.; Khouatmia, M. Using geochemical and isotopic tracers to characterize groundwater dynamics and salinity sources in the Wadi Guenniche coastal plain in northern Tunisia. J. Arid Environ. 2020, 178, 104150. [Google Scholar] [CrossRef]
- IAEA. GNIP Maps and Animations, International Atomic Energy Agency, Vienna, 2001. Available online: https://nucleus.iaea.org/wiser (accessed on 28 January 2025).
- Leduc, C.; Taupin, J.D.; Le Gal la Salle, C. Estimation de la recharge de la nappe phréatique du Continental Terminal (Niamey, Niger) à partir des teneurs en tritium. C. R. Acad. Sci. Paris 1996, 323, 599–605. [Google Scholar]
- Salem, O.; Visser, J.H.; Dray, M.; Gonfiantini, R. Groundwater Flow Patterns in the Western Libyan Arab Jamahiriya Evaluated from Isotopic Data; International Atomic Energy Agency (IAEA): Vienna, Austria, 1980. [Google Scholar]
- Wang, Z.-J.; Yue, F.-J.; Lu, J.; Wang, Y.-C.; Qin, C.-Q.; Ding, H.; Xue, L.-L.; Li, S.-L. New insight into the response and transport of nitrate in karst groundwater to rainfall events. Sci. Total Environ. 2022, 818, 151727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-J.; Yue, F.-J.; Wang, Y.-C.; Qin, C.-Q.; Xue, L.-L.; Li, S.-L. The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection. Agric. Water Manag. 2022, 266, 107600. [Google Scholar] [CrossRef]
- Troudi, N.; Tzoraki, O.; Hamzaoui-Azaza, F.; Melki, F.; Zammouri, M. Evaluation of Groundwater Quality Using Nitrate Pollution Index and the Potential Health Risk Method in Guenniche Basin of Northern Bizerte (Tunisia, North Africa). In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 4th ed.; Ksibi, M., Sousa, A., Hentati, O., Chenchouni, H., Velho, J.L., Negm, A., Rodrigo-Comino, J., Hadji, R., Chakraborty, S., Ghorbal, A., Eds.; EMCEI 2022, Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
Method | Application |
---|---|
Geological | Elucidates the aquifer’s geometry and flow paths. |
Geophysical | Identifies geological structures and fractures. |
Speleological | Maps conduit networks, providing direct insights. |
Hydrological and Hydraulic | Establish water balances and determine hydraulic properties. |
Hydrochemical and Isotopic | Trace water origins, movements, and interactions. |
Artificial Tracers | Delineate connections and flow velocities [20] |
Meteorological Station | Observation Period of Data Series | Location (WGS 84) | Mean Annual Precipitation (mm) | Altitude (m) | |
---|---|---|---|---|---|
X | Y | ||||
Zaghouan PF | 1961 to 2017 | 10.129 | 36.425 | 470 | 130 |
Mograne CSA SM | 1971 to 2020 | 10.090 | 36.432 | 485 | 151 |
Zaghouan SM | 1909 to 2016 | 10.153 | 36.403 | 481 | 165 |
Zaghouan DRE | 1976 to 2017 | 10.144 | 36.403 | 449 | 238 |
Zaghouan Contrôle | 1915 to 1951 | 10.149 | 36.395 | 497 | 241 |
Zaghouan Sidi Bou Gabrine | 1991 to 2017 | 10.116 | 36.375 | 492 | 677 |
Zaghouan Poste Optique | 1912 to 2008 | 10.140 | 36.441 | 516 | 945 |
Observation Period | Kendall’s Tau | p-Value |
---|---|---|
2002–2011 | 0.157 | 0.01844 |
2011–2020 | 0.066 | 0.291 |
Rainfall (mm/Year) | Observed Discharge (Million m3/Year) | Recharge (APLIS) Million m3/Year | Yield 1 APLIS (Million m3/Year) | |
---|---|---|---|---|
Average year | 467 | 3.6 | 3.8 | 0.2 |
Wet year | 867 | 6.5 | 7.0 | 0.5 |
Dry year | 239 | 1.9 | 1.9 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargouri-Ellouze, E.; Slama, F.; Kriaa, S.; Benhmid, A.; Taupin, J.-D.; Bouhlila, R. Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change. Water 2025, 17, 407. https://doi.org/10.3390/w17030407
Gargouri-Ellouze E, Slama F, Kriaa S, Benhmid A, Taupin J-D, Bouhlila R. Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change. Water. 2025; 17(3):407. https://doi.org/10.3390/w17030407
Chicago/Turabian StyleGargouri-Ellouze, Emna, Fairouz Slama, Samiha Kriaa, Ali Benhmid, Jean-Denis Taupin, and Rachida Bouhlila. 2025. "Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change" Water 17, no. 3: 407. https://doi.org/10.3390/w17030407
APA StyleGargouri-Ellouze, E., Slama, F., Kriaa, S., Benhmid, A., Taupin, J.-D., & Bouhlila, R. (2025). Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change. Water, 17(3), 407. https://doi.org/10.3390/w17030407