Recent Advances in Karstic Hydrogeology, 2nd Edition

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydrogeology".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 6106

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil, Building, and Environmental Engineering, Sapienza University of Rome, Rome, Italy
Interests: karst spring; water management; groundwater monitoring; hydrogeochemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil, Construction and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
Interests: groundwater management; karst aquifers; coastal aquifers; hydrogeochemistry; groundwater monitoring
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Karst hydrogeology is one of the most challenging topics for related researchers, water managers. The presence of voids, conduits and karst features lead to high heterogeneity and anisotropy, implying often a multidisciplinary approach for this kind of studies since both surface and subsurface hydraulic dynamics are present.

These characteristics make karst aquifers complex to study and difficult to manage because of its intrinsic high vulnerability to pollutants.

Nonetheless, karst aquifers constitute the major percentage of exploitable drinking water resource for many countries all over the world.

Following the successful completion of the first volume of the Special Issue “Recent Advances in Karstic Hydrogeology”, the second version of this Special Issue aims to collect the most recent and advanced research studies on this topic to overcome issues related to karst water resources such as vulnerability assessments, climate change and the resilience of karst water exploitation systems, karst coastal aquifer management and modelling.

Papers focusing on hydrochemical models are welcomed, as well as conceptual models and recent machine-learning and A.I. models on subsurface flow.

Prof. Dr. Giuseppe Sappa
Dr. Francesco Maria De Filippi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • karst
  • climate change
  • vulnerability
  • karst modelling
  • groundwater management
  • isotopes
  • geochemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

33 pages, 8519 KiB  
Article
Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change
by Emna Gargouri-Ellouze, Fairouz Slama, Samiha Kriaa, Ali Benhmid, Jean-Denis Taupin and Rachida Bouhlila
Water 2025, 17(3), 407; https://doi.org/10.3390/w17030407 - 1 Feb 2025
Viewed by 321
Abstract
Karst aquifers in the Mediterranean region are crucial for water supply and agriculture but are increasingly threatened by climate change and overexploitation. The Jebel Zaghouan aquifer, historically significant for supplying Carthage and Tunis, serves as the focus of this study, which aims to [...] Read more.
Karst aquifers in the Mediterranean region are crucial for water supply and agriculture but are increasingly threatened by climate change and overexploitation. The Jebel Zaghouan aquifer, historically significant for supplying Carthage and Tunis, serves as the focus of this study, which aims to evaluate its availability, quality, and vulnerability to ensure its long-term sustainability. To achieve this, various methods were employed, including APLIS and COP for recharge assessment and vulnerability mapping, SPEI and SGI drought indices, and stable and radioactive isotope analysis. The findings revealed severe groundwater depletion, primarily caused by overexploitation linked to urban expansion. Minimal recharge was observed, even during wet periods. APLIS analysis indicated moderate infiltration rates, consistent with prior reservoir models and the MEDKAM map. Isotopic analysis highlighted recharge from the Atlantic and mixed rainfall, while Tritium and Carbon-14 dating showed a mix of ancient and recent water, emphasizing the aquifer’s complex hydrodynamics. COP mapping classified 80% of the area as moderately vulnerable. Monitoring of nitrate levels indicated fluctuations, with peaks during wet years at Sidi Medien Spring, necessitating control measures to safeguard water quality amid agricultural activities. This study provides valuable insights into the aquifer’s dynamics, guiding sustainable management and preservation efforts. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

28 pages, 8636 KiB  
Article
Karst Hydrological Connections of Lakes and Neoproterozoic Hydrogeological System between the Years 1985–2020, Lagoa Santa—Minas Gerais, Brazil
by Wallace Pacheco Neto, Rodrigo de Paula and Paulo Galvão
Water 2024, 16(18), 2591; https://doi.org/10.3390/w16182591 - 12 Sep 2024
Viewed by 858
Abstract
This study focuses on a complex Brazilian Neoproterozoic karst (hydro)geological and geomorphological area, consisting of metapelitic–carbonate sedimentary rocks of ~740–590 Ma, forming the largest carbonate sequence in the country. At the center of the area lies the Lagoa Santa Karst Environmental Protection Area [...] Read more.
This study focuses on a complex Brazilian Neoproterozoic karst (hydro)geological and geomorphological area, consisting of metapelitic–carbonate sedimentary rocks of ~740–590 Ma, forming the largest carbonate sequence in the country. At the center of the area lies the Lagoa Santa Karst Environmental Protection Area (LSKEPA), located near the Minas Gerais’ state capital, Belo Horizonte, and presents a series of lakes associated with the large fluvial system of the Velhas river under the influence, locally, of carbonate rocks. The hydrodynamics of carbonate lakes remain enigmatic, and various factors can influence the behavior of these water bodies. This work analyzed the hydrological behavior of 129 lakes within the LSKEPA to understand potential connections with the main karst aquifer, karst-fissure aquifer, and porous aquifer, as well as their evolution patterns in the physical environment. Pluviometric surveys and satellite image analysis were conducted from 1984 to 2020 to observe how the lakes’ shorelines behaved in response to meteorological variations. The temporal assessment for understanding landscape evolution proves to be an effective tool and provides important information about the interaction between groundwater and surface water. The 129 lakes were grouped into eight classes representing the hydrological connection patterns with the aquifers in the region, with classes defined for perennial lakes: (1) constantly connected, (2) seasonally disconnected, and (3) disconnected; for intermittent lakes: (4) disconnected during the analyzed time interval, (5) seasonally connected, (6) disconnected, (7) extremely disconnected, and (8) intermittent lakes that connected and stopped drying up. The patterns observed in the variation of lakes’ shorelines under the influence of different pluviometric moments showed a positive correlation, especially in dry periods, where these water bodies may be functioning as recharge or discharge zones of the karst aquifer. These inputs and outputs are conditioned to the well-developed karst tertiary porosity, where water flow in the epikarst moves according to the direction of enlarged karstified fractures, rock foliation planes, and lithological contacts. Other factors may condition the hydrological behavior of the lakes, such as rates of evapotranspiration, intensity of rainfall during rainy periods, and excessive exploitation of water. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

15 pages, 6817 KiB  
Article
A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy)
by Francesco Maria De Filippi, Matteo Ginesi and Giuseppe Sappa
Water 2024, 16(18), 2580; https://doi.org/10.3390/w16182580 - 12 Sep 2024
Cited by 1 | Viewed by 980
Abstract
In the last decades, climate change has led to increasingly frequent drought events within the Mediterranean area, creating an urgent need of a more sustainable management of groundwater resources exploited for drinking and agricultural purposes. One of the most challenging issues is to [...] Read more.
In the last decades, climate change has led to increasingly frequent drought events within the Mediterranean area, creating an urgent need of a more sustainable management of groundwater resources exploited for drinking and agricultural purposes. One of the most challenging issues is to provide reliable simulations and forecasts of karst spring discharges, whose reduced information, as well as the hydrological processes involving their feeding aquifers, is often a big issue for water service managers and researchers. In order to plan a sustainable water resource exploitation that could face future shortages, the groundwater availability should be assessed by continuously monitoring spring discharge during the hydrological year, using collected data to better understand the past behaviour and, possibly, forecast the future one in case of severe droughts. The aim of this paper is to understand the factors that govern different spring discharge patterns according to rainfall inputs and to present a model, based on artificial neural network (ANN) data training and cross-correlation analyses, to evaluate the discharge of some karst spring in the Umbria region (Central Italy). The model used is a fully connected neural network (FCNN) and has been used both for filling gaps in the spring discharge time series and for simulating the response of six springs to rainfall seasonal patterns from a 20-year continuous daily record, collected and provided by the Regional Environmental Protection Agency (ARPA) of the Umbria region. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

23 pages, 34766 KiB  
Article
Modeling the Impact of Groundwater Pumping on Karst Geotechnical Risks in Sete Lagoas (MG), Brazil
by Paulo Galvão, Camila Schuch, Simone Pereira, Julia Moura de Oliveira, Pedro Assunção, Bruno Conicelli, Todd Halihan and Rodrigo de Paula
Water 2024, 16(14), 1975; https://doi.org/10.3390/w16141975 - 12 Jul 2024
Viewed by 1113
Abstract
Karst terrains can undergo geotechnical issues like subsidence and collapse, occurring both naturally and anthropogenically. The municipality of Sete Lagoas, in the State of Minas Gerais, Brazil, is notable for overexploiting a karst aquifer, resulting in adverse effects such as drying lakes and [...] Read more.
Karst terrains can undergo geotechnical issues like subsidence and collapse, occurring both naturally and anthropogenically. The municipality of Sete Lagoas, in the State of Minas Gerais, Brazil, is notable for overexploiting a karst aquifer, resulting in adverse effects such as drying lakes and geotechnical problems. This study aims to assess the progression of geotechnical risk areas in the central urban area from 1940 to 2020 and simulate future scenarios until 2100. To achieve this, historical hydraulic head data, a three-dimensional geological model, and a karst geotechnical risk matrix were used to develop a calibrated FEFLOW numerical model. Results show that before the installation of the first pumping well in 1942, the natural groundwater flow direction was primarily northeast. However, in the 1980s, a cone of depression emerged in the city, creating a zone of influence (ZOI) with a surface area of around 30 km2. Between 1940 and 2020, twenty geotechnical collapse events occurred in defined risk zones, often in regions where limestone outcrops or is mantled in association with the ZOI. In future scenarios, if the 2020 total annual groundwater pumping rate (Q = 145,000 m3/d) remains constant until 2100, the geotechnical risk zones will continue expanding laterally. To establish a sustainable risk state, a 40% decrease in the pumping rate (Q = 85,500 m3/d) is necessary. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 3426 KiB  
Article
Effects of Geometry on Artificial Tracer Dispersion in Synthetic Karst Conduit Networks
by Amal Rabah, Manuel Marcoux and David Labat
Water 2023, 15(22), 3885; https://doi.org/10.3390/w15223885 - 7 Nov 2023
Cited by 1 | Viewed by 1351
Abstract
This paper presents the modeling results of tracer test simulations performed using COMSOL Multiphysics (version 6.1), a powerful software for multiphysics simulation. The simulations consist of the propagation of artificial tracers injected into different model configurations. This study is based on computational fluid [...] Read more.
This paper presents the modeling results of tracer test simulations performed using COMSOL Multiphysics (version 6.1), a powerful software for multiphysics simulation. The simulations consist of the propagation of artificial tracers injected into different model configurations. This study is based on computational fluid dynamics (CFDs), which allows us to take into consideration the turbulent regime of the water flow in conduits. The objective of this contribution is to identify the relationship between the tracer dynamics and the geometric parameters of synthetic karstic systems via a systematic investigation of the occurrence of dual-peaked breakthrough curves (BTCs) in tracer tests. Various conduit structures were proposed by modifying five key factors: conduit diameter, presence of pools, connection angle between conduits, distance of the outlet from the inlet, and number of branches. The next step will be to confront these computational experiments with real-world tracer test experiments. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

Other

Jump to: Research

18 pages, 6692 KiB  
Protocol
Study Protocol of Predictive Dynamics of Microbiological Contamination of Groundwater in the Earth Critical Zone and Impact on Human Health (DY.MI.CR.ON Project)
by Marco Verani, Osvalda De Giglio, Maria Clementina Caputo, Giorgio Cassiani, Mirco Milani, Annalaura Carducci, Ileana Federigi, Alessandra Pagani, Alessandra Angori, Francesco Triggiano, Antonella Francesca Savino, Debora Colella, Francesco Bagordo, Maria Antonella De Donno, Tiziana Grassi, Silvia Brigida, Lorenzo De Carlo, Antonietta Celeste Turturro, Mert Çetin Ekiz, Valentina Prigiobbe, Alessandro Ghirotto, Alessandro D’Emilio, Simona Consoli, Salvatore Barresi, Federica Bivona and Maria Teresa Montagnaadd Show full author list remove Hide full author list
Water 2025, 17(3), 294; https://doi.org/10.3390/w17030294 - 22 Jan 2025
Viewed by 544
Abstract
Groundwater is one of the major sources of water supply for human needs. But anthropic activities such as agriculture are causing significant volume depletion and quality deterioration, favoring microbial contamination that has a negative impact on human health. The geological characteristics of the [...] Read more.
Groundwater is one of the major sources of water supply for human needs. But anthropic activities such as agriculture are causing significant volume depletion and quality deterioration, favoring microbial contamination that has a negative impact on human health. The geological characteristics of the ground can influence the transport of microorganisms, especially if made of permeable rock. Furthermore, irrigation with untreated or partially treated wastewater can represent an additional health risk due to the potential transmission of pathogens to food. The aim of our research is to provide an interdisciplinary perspective on this issue by integrating hygienic, geological, and agronomic skills. Water samplings are scheduled seasonally by four monitoring campaigns in five sampling points placed in two Southern Italy regions, Apulia (one point at the outlet and two wells near the wastewater plant at Carpignano Salentino, Lecce province, Italy) and Sicily (two wells at Scicli and Pozzallo, Ragusa province, Italy) Laboratory experiments of microorganism transport in permeable rocks will be carried out under saturated and unsaturated conditions. A mathematical model of transport through porous media will be implemented and validated with laboratory measurements. The model will be used to develop a monitoring tool to control sites in Apulia and Sicily where periodic cultural and molecular detection of pathogenic bacteria, viruses, and protozoa will also be taken. In addition, an analysis of the microbiological contamination of herbaceous crops due to the use of low-quality water will be conducted to assess the Quantitative Microbial Risk Assessment (QMRA). The project will provide methodological tools to evaluate anthropogenic pressures and their impact on environmental matrices. The results will allow these pressures to be modulated to minimize environmental and agri-food microbiological contamination and protect public health. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

Back to TopTop