Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions
Abstract
:1. Introduction
2. Methods and Materials
2.1. Determination of Agricultural Irrigation Water Demand and Water Use in a River Basin
2.1.1. The WBalMo Water Management Model
2.1.2. Implementation of an Agricultural Irrigation Module in the Model WBalMo
Crop | March | April | May | June | July | August |
---|---|---|---|---|---|---|
Winter wheat | 1.07 | 1.12 | 1.36 | 1.36 | 1.31 | - |
Winter rye | 1.01 | 1.07 | 1.42 | 1.31 | 1.26 | - |
Winter barley | 1.12 | 1.18 | 1.54 | 1.41 | 1.36 | - |
Winter rapeseed | 1.01 | 1.18 | 1.60 | 1.36 | 1.11 | |
Silage maize | - | 0.24 | 0.54 | 0.79 | 1.11 | 0.91 |
Potatoes | - | 0.59 | 1.07 | 1.11 | 1.41 | 1.21 |
Oats | - | 0.83 | 1.30 | 1.41 | 1.36 | - |
Asparagus | 0.47 | 0.59 | - | 0.43 | 1.31 | 1.31 |
Crop | Priority | Water Productivity Coefficient (kg·ha−1·mm−1) |
---|---|---|
Asparagus | 1 | 25 |
Potatoes | 2 | 120 |
Silage maize | 3 | 120 |
Winter wheat | 4 | 15 |
Winter barley | 5 | 12 |
Winter rye | 6 | 15 |
Winter rapeseed | 7 | 9 |
Oats | 8 | 17 |
2.2. Study Area and Model Setup
2.2.1. Description of Study Area
2.2.2. Applied Climate Projections in the WBalMo Model for the Study Area
- (1)
- EH5r3_RE-ENS from the Max Planck Institute for Meteorology;
- (2)
- ARP-ALD51 from Météo-France, Centre National de Recherches Météorologiques; and
- (3)
- HCQ0-HRQ0 from the Hadley Centre for Climate Prediction and Research.
2.2.3. Calculating Agricultural Irrigation Data to Expand the WBalMo Model for the Study Area
2.3. Irrigation Management Scenario Analyses
3. Results
3.1. Irrigation Users and Irrigated Crops
3.2. Testing the Module
3.3. Climate Impact (SC_I)
3.3.1. Future Development of the Irrigation Water Demand under Climate Change
3.3.2. Crop Irrigation Demands under Conditions of Climate Change
3.3.3. Gaps between Demand and Availability of Irrigation Water under Conditions of Climate Change
3.3.4. Agricultural Opportunities via Irrigation under Conditions of Climate Change
Crop | REF (€·ha−1·year−1) | EH5 | ARP | HCQ |
---|---|---|---|---|
Oats | 315 | 2% | 2% | 15% |
Potatoes | 2481 | 7% | 4% | 17% |
Silage maize | 201 | 7% | 8% | 27% |
Asparagus | 9233 | 11% | 6% | 16% |
Winter barley | 160 | 2% | 0% | 10% |
Winter rapeseed | 111 | 7% | 4% | 16% |
Winter rye | 157 | 3% | −1% | 11% |
Winter wheat | 409 | 4% | 0% | 16% |
3.3.5. Impacts of Agricultural Irrigation under Conditions of Climate Change
Month | Climate Projection | |||||||
---|---|---|---|---|---|---|---|---|
REF | EH5 | ARP | HCQ | REF | EH5 | ARP | HCQ | |
Q (L s−1) | ΔQ SC_I = SC_I − REF | ΔQ SC_II = Q SC_II − Q SC_I | ||||||
May | 246 | −30% | −49% | −55% | −1% | −1% | −1% | −1% |
June | 148 | 6% | 32% | −32% | −2% | −2% | −2% | −1% |
July | 87 | −49% | 10% | −62% | −4% | −3% | −4% | −2% |
August | 106 | −64% | 13% | −61% | −3% | −1% | −2% | −1% |
September | 116 | −11% | −11% | −75% | −3% | −4% | −1% | −1% |
3.4. Area Impact (SC_II)
3.4.1. Impacts of Agricultural Irrigation under Conditions of Area Expansion
3.4.2. Gaps between Demand and Availability of Irrigation Water Due to Area Expansion
3.4.3. Crop Yields with Irrigation under Conditions of Area Expansion
4. Discussion
4.1. Test und Interpretation of the Model
4.2. Opportunities
4.3. Impacts
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Riediger, J.; Breckling, B.; Nuske, R.S.; Schröder, W. Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environ. Sci. Eur. 2014, 26, 1–13. [Google Scholar] [CrossRef]
- Simon, M. Die landwirtschaftliche Bewässerung in Ostdeutschland seit 1949—Eine historische Analyse vor dem Hintergrund des Klimawandels; Summary Report No. 114; PIK-Praxis der Informationsverarbeitung und Kommunikation: Potsdam, Germany, 2009. [Google Scholar]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef]
- Wessolek, G.; Asseng, S. Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany. Eur. J. Agron. 2006, 24, 333–342. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; SkjelvÅg, A.O.; Eltzinger, J.; Seguin, B.; Rötter, R.; Peltonen-Sainio, P.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Holsten, A.; Vetter, T.; Vohland, K.; Krysanova, V. Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecol. Model. 2009, 220, 2076–2087. [Google Scholar] [CrossRef]
- Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O. Testing farm management options as climate change adaptation strategies using the MONICA model. Eur. J. Agron. 2014, 52, 47–56. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. (Eds.) Climate Change and Water: Technical Paper VI; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008; p. 210.
- Schindler, U.; Steidl, J.; Müller, L.; Eulenstein, F.; Jürgen, T. Drought risk to agricultural land in Northeast and Central Germany. J. Plant Nutr. Soil Sci. 2007, 170, 357–362. [Google Scholar] [CrossRef]
- Calzadilla, A.; Rehdanz, K.; Betts, R.; Falloon, P.; Wiltshire, A. Climate change impacts on global agriculture. Clim. Chang. 2013, 120, 357–374. [Google Scholar] [CrossRef]
- Mitchell, D. A note on rising food prices. In World Bank Policy Research Working Paper Series; World Bank: Washington, DC, USA, 2008; p. 22. [Google Scholar]
- Berbel, J.; Calatrava, J.; Garrido, A. Water pricing and irrigation: A review of the European experience. In Irrigation Water Pricing Policy: The Gap Between Theory and Practice; Centre for Agriculture and Biosciences International: Wallingford, UK; Cambridge, MA, USA, 2007; pp. 295–327. [Google Scholar]
- Gutzler, C.; Helming, K.; Balla, D.; Dannoowski, R.; Deumlich, D.; Glemnitz, M.; Knierim, A.; Mirschel, W.; Nendel, C.; Paul, C.; et al. Agricultural land use changes—A scenario-based sustainability impact assessment for Brandenburg, Germany. Ecol. Indic. 2015, 48, 505–517. [Google Scholar] [CrossRef]
- Thomas, B.; Steidl, J.; Dietrich, O.; Lischeid, G. Measures to sustain seasonal minimum runoff in small catchments in the mid-latitudes: A review. J. Hydrol. 2011, 408, 296–307. [Google Scholar] [CrossRef]
- Eheart, J.W.; Tornil, D.W. Low-flow frequency exacerbation by irrigation withdrawals in the agricultural midwest under various climate change scenarios. Water Resour. Res. 1999, 35, 2237–2246. [Google Scholar] [CrossRef]
- Jeppesen, E.; Kronvang, B.; Olesen, J.E.; Audet, J.; Sondergaard, M.; Hoffmann, C.C.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L. Climate change effects on nitrogen loading from cultivated catchments in Europe: Implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 2011, 663, 1–21. [Google Scholar] [CrossRef]
- Wegehenkel, M.; Kersebaum, K.-C. An assessment of the impact of climate change on evapotranspiration, groundwater recharge, and low-flow conditions in a mesoscale catchment in Northeast Germany. J. Plant Nutr. Soil Sci. 2009, 172, 737–744. [Google Scholar] [CrossRef]
- Thomas, B.; Lischeid, G.; Steidl, J.; Dietrich, O. Long term shift of low flows predictors in small lowland catchments of Northeast Germany. J. Hydrol. 2015, 521, 508–519. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Beek, E.; Stedinger, J.R.; Dijkman, J.P.M.; Villars, M.T. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications; UNESCO: Paris, France, 2005. [Google Scholar]
- Kaden, S.S.M.; Redetzky, M. Large-scale water management models as instruments for river catchment management. In Integrated Analysis of the Impacts of Global Change on Environment and Society in the Elbe; Basin, K.S., Wechsung, F., Behrendt, H., Klöcking, B., Eds.; Weißenseeverlag: Berlin, Germany, 2008; pp. 217–227. [Google Scholar]
- WBalMo 3.1–Interactive Simulation System for Planning and Management in River Basins; User’s Manual; WASY GmbH: Berlin, Germany, 2005.
- Koch, H.; Kaltofen, M.; Schramm, M. Adaptation strategies to global change for water resources management in the Spree river Catchment, Germany. Int. J. River Basin Manag. 2006, 4, 273–281. [Google Scholar] [CrossRef]
- Koch, H.; Kaltofen, M.; Grünewald, U.; Messner, F.; Karkuschke, M.; Zwirner, O.; Schramm, M. Scenarios of water resources management in the Lower Lusatian mining district, Germany. Ecol. Eng. 2005, 24, 49–57. [Google Scholar] [CrossRef]
- Dietrich, O.; Redetzky, M.; Schwarzel, K. Wetlands with controlled drainage and sub-irrigation systems—Modelling of the water balance. Hydrol. Process. 2007, 21, 1814–1828. [Google Scholar] [CrossRef]
- Dietrich, O.; Steidl, J.; Pavlik, D. The impact of global change on the water balance of large wetlands in the Elbe Lowland. Reg. Environ. Chang. 2012, 12, 701–713. [Google Scholar] [CrossRef]
- Grossmann, M.; Dietrich, O. Integrated Economic-Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany). Water Resour. Manag. 2012, 26, 2081–2108. [Google Scholar] [CrossRef]
- Grossmann, M.; Dietrich, O. Social Benefits and Abatement Costs of Greenhouse Gas Emission Reductions from Restoring Drained Fen Wetlands: A Case Study from the Elbe River Basin (Germany). Irrig. Drain. 2012, 61, 691–704. [Google Scholar] [CrossRef]
- Van der Linden, P.; Mitchell, J.F.B. ENSEMBLES—Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project. 2009. Available online: http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf (accessed on 6 November 2015).
- Kwon, H.-H.; Lall, U.; Khalil, A.F. Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Dahlhaus, R.; Trindade, A.A. Modified burg algorithms for multivariate subset autoregression. Stat. Sin. 2005, 15, 197–213. [Google Scholar]
- Efstratiadis, A.; Dialynas, Y.G.; Kozanis, S.; Koutsoyiannis, D. A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence. Environ. Model. Softw. 2014, 62, 139–152. [Google Scholar] [CrossRef]
- Conradt, T.; Koch, H.; Hattermann, F.F.; Wechsung, F. Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Reg. Environ. Chang. 2012, 12, 633–648. [Google Scholar] [CrossRef]
- Koch, H.; Voegele, S. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol. Econ. 2009, 68, 2031–2039. [Google Scholar] [CrossRef]
- Kaden, S.O.; Schramm, M.; Redetzky, M. ArcGRM: Interactive Simulation System for Water Resources Planning and Management in River Basins; Taylor and Francis Group: London, UK, 2004; pp. 185–192. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- ATV-DVWK. Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden. Available online: http://www.dwa.de/dwa/shop/produkte.nsf/B161983F251AD1B2C125753C003466B9/$file/vorschau_atv_dvwk_m_504.pdf (accessed on 6 November 2015).
- DVWK. Ermittlung der Verdunstung von Land- und Wasserflächen; Wirtschafts- und Verl.-Ges. Gas und Wasser: Born, Germany, 1996. [Google Scholar]
- Mirschel, W.; Wieland, R.; Wenkel, K.-O.; Nendel, C.; Guddat, C. YIELDSTAT—A spatial yield model for agricultural crops. Eur. J. Agron. 2014, 52, 33–46. [Google Scholar] [CrossRef]
- Offermann, F.; Banse, M.; Ehrmann, M.; Gocht, A.; Gömann, H.; Haenel, H.-D.; Kleinhanß, W.; Kreins, P.; von Ledebur, O.; Osterburg, B.; et al. vTI-Baseline 2011–2021: Agrarökonomische Projektionen für Deutschland—Sonderheft 355; Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei (vTI): Braunschweig, Germany, 2012. [Google Scholar]
- Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL). Feldbewässerung: Betriebs- und arbeitswirtschaftliche Kalkulationen; KTBL: Darmstadt, Germany, 2013. [Google Scholar]
- Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei Bodenbearbeitung, Bewässerung, Landschaftselemente—Erhebung über landwirtschaftliche Produktionsmethoden (ELPM); Statistisches Bundesamt: Wiesbaden, Germany, 2011. [Google Scholar]
- European Commission. Integrated Administration and Control System (IACS). Available online: http://ec.europa.eu/agriculture/direct-support/iacs/index_en.htm (accessed on 19 May 2015).
- German Meteorological Service. Available online: http://www.dwd.de/DE/Home/home_node.html (accessed on 6 November 2015).
- Rauthe, M.; Heiko, S.; Ulf, R.; Alex, M.; Annegret, G. A Central European precipitation climatology—Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorol. Z. 2013, 22, 235–256. [Google Scholar] [CrossRef]
- Ebner von Eschenbach, A.D.; Hohenrainer, J.; Kaltofen, M.; Müller, F.; Schramm, M. Wasserwirtschaftliche Verhältnisse des Projektes 17 für den Bereich des WNA Berlin; Bundesanstalt für Gewässerkunde: Koblenz, Germany, 2013; p. 210. [Google Scholar]
- Kersebaum, K.C.; Nendel, C. Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. Eur. J. Agron. 2014, 52, 22–32. [Google Scholar] [CrossRef]
- Bazzani, G.M.; di Pasquale, S.; Gallerani, V.; Morganti, S.; Raggi, M.; Viaggi, D. The sustainability of irrigated agricultural systems under the Water Framework Directive: First results. Environ. Model. Softw. 2005, 20, 165–175. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C.; McKinney, D.C.; Keller, A.; Donoso, G. Integrated economic-hydrologic water modeling at the basin scale: The Maipo river basin. Agric. Econ. 2000, 24, 33–46. [Google Scholar]
- Schaldach, R.; Koch, J.; der Beek, T.A.; Kynast, E.; Flörke, M. Current and future irrigation water requirements in pan-Europe: An integrated analysis of socio-economic and climate scenarios. Glob. Planet. Chang. 2012, 94–95, 33–45. [Google Scholar] [CrossRef]
- Falloon, P.; Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation-The importance of an integrated approach. Sci. Total Environ. 2010, 408, 5667–5687. [Google Scholar] [CrossRef] [PubMed]
- Finger, R. Modeling the sensitivity of agricultural water use to price variability and climate change-An application to Swiss maize production. Agric. Water Manag. 2012, 109, 135–143. [Google Scholar] [CrossRef]
- Roers, M.; Wechsung, F. Reassessing the Climate Impact on the Water Balance of the Elbe River Basin. Hydrol. Wasserbewirtsch. 2015, 59, 109–119. [Google Scholar]
- Thomas, B.; Lischeid, G.; Steidl, J.; Dannowski, R. Regional catchment classification with respect to low flow risk in a Pleistocene landscape. J. Hydrol. 2012, 475, 392–402. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steidl, J.; Schuler, J.; Schubert, U.; Dietrich, O.; Zander, P. Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions. Water 2015, 7, 6351-6377. https://doi.org/10.3390/w7116351
Steidl J, Schuler J, Schubert U, Dietrich O, Zander P. Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions. Water. 2015; 7(11):6351-6377. https://doi.org/10.3390/w7116351
Chicago/Turabian StyleSteidl, Jörg, Johannes Schuler, Undine Schubert, Ottfried Dietrich, and Peter Zander. 2015. "Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions" Water 7, no. 11: 6351-6377. https://doi.org/10.3390/w7116351
APA StyleSteidl, J., Schuler, J., Schubert, U., Dietrich, O., & Zander, P. (2015). Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions. Water, 7(11), 6351-6377. https://doi.org/10.3390/w7116351