Spatial Distribution of Benthic Macroinvertebrate Assemblages in Relation to Environmental Variables in Korean Nationwide Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurement of Environmental Variables
2.3. Sampling of Benthic Macroinvertebrate
2.4. Data Analysis
3. Results
3.1. Environmental Characteristics
3.2. Benthic Macroinvertebrate Assemblages
Variable | HRW (n = 320) | NRW (n = 130) | GRW (n = 130) | YRW (n = 76) | SRW (n = 64) | Total (n = 720) | p (K–W) |
---|---|---|---|---|---|---|---|
(a) Regional and physical instream variables | |||||||
Altitude (m) | 147.5 (151.6) d | 89.6 (119.1) b,c | 57.7 (61.2) a,b | 32.5 (35.1) a | 118.1 (79.3) c,d | 106.1 (126.2) | 0.000 |
1.0–721.0 | 1.0–629.0 | 0.0–278.0 | 0.0–211.0 | 1.0–335.0 | 0.0–721.0 | ||
% Urban | 31.7 (32.0) b | 23.0 (30.8) a,b | 30.9 (35.8) b | 31.4 (30.2) b | 14.6 (12.4) a | 28.4 (31.5) | 0.000 |
0–100 | 0–100 | 0–100 | 0–90 | 0–80 | 0–100 | ||
% Agriculture | 24.7 (27.5) a | 42.5 (31.0) b,c | 46.6 (38.9) c | 45.4 (30.7) c | 35.9 (20.7) b | 35.0 (31.7) | 0.000 |
0–100 | 0–100 | 0–100 | 0–90 | 0–80 | 0–100 | ||
% Forest | 35.8 (33.2) b | 31.4 (27.8) b | 17.9 (30.1) a | 22.6 (24.3) a | 48.8 (24.6) c | 31.5 (31.3) | 0.000 |
0–100 | 0–100 | 0–100 | 0–100 | 0–95 | 0–100 | ||
Water velocity (cm/s) | 53.8 (27.9) c | 14.7 (14.0) a | 38.1 (34.5) b | 17.7 (13.1) a | 41.9 (26.0) b | 39.0 (30.4) | 0.000 |
0.0–140.0 | 0.0–67.0 | 0.0–137.7 | 0.4–47.5 | 1.4–98.2 | 0.0–140.0 | ||
% Fine particles | 31.1 (27.9) b | 36.5 (36.8) b,c | 43.6 (34.5) c | 54.7 (31.3) d | 10.8 (22.9) a | 35.0 (32.6) | 0.000 |
0.0–100.0 | 0.0–100.0 | 0.0–100.0 | 0.0–100.0 | 0.0–100.0 | 0.0–100.0 | ||
% Coarse particles | 68.6 (28.1) c | 63.5 (36.8) b,c | 56.4 (34.5) b | 45.3 (31.3) a | 89.2 (22.9) d | 64.8 (32.7) | 0.000 |
0.0–100.0 | 0.0–100.0 | 0.0–100.0 | 0.0–100.0 | 0.0–100.0 | 0.0–100.0 | ||
(b) Chemical variables | |||||||
pH | 8.1 (0.8) b,c | 8.0 (0.8) a,b | 8.3 (0.9) c | 8.0 (0.7) a,b | 7.8 (0.7) a | 8.1 (0.8) | 0.003 |
6.5–10.1 | 6.2–10.6 | 7.0–11.1 | 6.7–10.1 | 6.7–9.6 | 6.2–11.1 | ||
DO (mg/L) | 9.78 (2.47) a | 10.81 (2.36) b | 10.86 (3.36) b | 10.06 (1.69) a | 9.57 (1.32) a | 10.17 (2.54) | 0.000 |
2.42–16.10 | 2.55–17.34 | 2.74–17.86 | 6.19–15.40 | 7.11–12.69 | 2.42–17.86 | ||
BOD (mg/L) | 3.1 (3.7) b,c | 1.9 (1.3) a | 3.7 (2.0) c | 3.5 (3.0) b,c | 2.7 (1.7) b | 3.0 (2.9) | 0.000 |
0.3–37.5 | 0.4–10.4 | 0.8–9.1 | 0.3–13.3 | 0.3–12.3 | 0.3–37.5 | ||
EC (μS/cm) | 299.8 (337.6) a | 1358.7 (6067.1) b | 404.8 (349.8) a | 270.7 (402.6) a | 1284.6 (5823.4) b | 594.4 (3141.6) | 0.000 |
10.3–2729.0 | 19.7–44000.0 | 86.1–2780.0 | 28.5–3082.0 | 32.6–33360.0 | 10.3–44000.0 | ||
TN (mg/L) | 3.15 (2.97) b | 2.10 (1.66) a | 3.60 (2.42) b | 3.36 (3.59) b | 2.32 (1.39) a | 2.99 (2.69) | 0.000 |
0.38–23.78 | 0.32–11.30 | 0.29–14.27 | 0.69–27.71 | 0.44–5.77 | 0.29–27.71 | ||
TP (mg/L) | 0.15 (0.41) b,c | 0.07 (0.15) a,b | 0.14 (0.15) b,c | 0.21 (0.28) c | 0.05 (0.06) a | 0.13 (0.30) | 0.000 |
0.00–5.59 | 0.00–0.91 | 0.01–1.01 | 0.01–1.66 | 0.00–0.32 | 0.00–5.59 | ||
Turbidity (NTU) | 9.3 (16.6) b | 8.6 (7.4) b | 13.9 (22.3) b | 7.8 (45.9) b | 2.1 (3.3) a | 9.2 (21.2) | 0.000 |
0.0–152.0 | 0.0–34.2 | 0.4–182.4 | 0.0–400.0 | 0.0–16.9 | 0.0–400.0 |
Biological Attributes | HRW (n = 320) | NRW (n = 130) | GRW (n = 130) | YRW (n = 76) | SRW (n = 64) | Total (n = 720) | RA | p (K–W) | |
---|---|---|---|---|---|---|---|---|---|
(a) Assemblage attributes | |||||||||
Taxa richness | 15.7 (9.4) a | 11.7 (7.3) b | 15.5 (10.8) a | 10.6 (6.3) b | 15.1 (8.0) a | 14.4 (9.1) | - | 0.000 | |
EPT richness | 10.3 (8.0) c | 5.3 (5.5) a | 7.6 (8.2) b | 4.5 (4.7) a | 8.5 (5.4) b | 8.1 (7.5) | - | 0.000 | |
Taxa abundance | 2867.5 (9791.9) b | 864.9 (1035.2) a | 3944.4 (5964.7) b | 947.0 (1054.1) a | 612.0 (548.2) a | 2297.1 (7121.0) | - | 0.000 | |
EPT abundance | 1066.9 (1702.9) b | 303.2 (726.5) a | 1552.5 (2441.0) c | 316.4 (545.0) a | 278.6 (315.8) a | 867.4 (1647.2) | - | 0.000 | |
Dominance index | 0.65 (0.21) b | 0.70 (0.20) b,c | 0.71 (0.21) b,c | 0.73 (0.20) c | 0.52 (0.23) a | 0.67 (0.22) | - | 0.000 | |
Shannon diversity index | 2.33 (1.00) b | 2.08 (0.91) b | 2.09 (1.02) b | 1.79 (0.94) a | 2.63 (1.09) c | 2.21 (1.01) | - | 0.000 | |
(b) Taxa abundance of higher taxonomic group | |||||||||
Non-Insecta | Platyhelminthes | 18.7 (78.8) | 28.7 (196.7) | 25.5 (102.4) | 9.9 (49.2) | 17.2 (37.8) | 20.7 (109.6) | 0.01 | 0.447 |
Nematomorpha | 0.2 (0.9) | 0.1 (0.6) | 0.1 (0.5) | 0.1 (0.8) | 0.0 (0.0) | 0.1 (0.7) | 0.00 | 0.082 | |
Mollusca | 10.7 (39.4) a | 44.4 (151.5) c | 30.4 (54.3) b | 27.4 (49.5) b | 21.2 (30.9) a,b | 23.0 (76.5) | 0.01 | 0.000 | |
Annelida | 603.5 (6826.2) b | 39.9 (90.8) a | 548.3 (2997.6) b | 21.0 (61.4) a | 68.1 (91.7) a | 382.7 (4731.0) | 0.20 | 0.000 | |
Crustacea | 1.9 (12.2) a | 42.9 (214.3) a | 41.2 (243.9) a | 109.8 (560.6) b | 1.4 (7.0) a | 27.7 (230.6) | 0.01 | 0.000 | |
Insecta | Ephemeroptera | 692.6 (1132.9) b | 316.6 (594.6) a | 565.1 (1015.1) b | 199.0 (308.7) a | 377.3 (389.0) a | 521.5 (936.0) | 0.27 | 0.000 |
Odonata | 3.9 (12.3) a | 4.2 (12.4) a | 14.5 (37.1) b | 11.9 (29.2) b | 0.7 (2.2) a | 6.4 (21.3) | 0.00 | 0.000 | |
Plecoptera | 6.6 (21.6) b | 5.6 (29.6) b | 4.2 (21.5) a,b | 0.1 (0.7) a | 0.7 (4.2) a | 4.8 (21.3) | 0.00 | 0.000 | |
Hemiptera | 1.1 (9.3) a | 38.7 (207.4) b | 25.0 (129.1) a,b | 25.5 (213.5) a,b | 0.0 (0.3) a | 14.7 (125.7) | 0.01 | 0.000 | |
Megaloptera | 2.6 (10.4) b | 1.2 (6.0) a,b | 1.6 (6.0) a,b | 0.5 (2.3) a | 1.0 (9.8) a,b | 1.8 (8.4) | 0.00 | 0.000 | |
Coleoptera | 15.3 (97.6) a | 28.6 (80.6) a | 80.9 (200.8) c | 8.9 (31.5) a | 56.9 (94.9) b | 32.6 (119.3) | 0.02 | 0.000 | |
Diptera | 449.3 (780.2) b | 309.8 (452.1) b | 806.2 (1853.3) c | 344.1 (712.1) b | 105.0 (164.4) a | 446.9 (1009.5) | 0.23 | 0.000 | |
Trichoptera | 549.2 (1029.0) b | 306.6 (771.8) a | 845.3 (1564.4) c | 114.5 (296.2) a | 126.4 (295.1) a | 475.4 (1044.8) | 0.24 | 0.000 | |
Lepidoptera | 0.0 (0.1) a | - | 0.1 (0.9) b | 0.0 (0.6) a,b | - | 0.0 (0.4) | 0.00 | 0.000 | |
Neuroptera | - | - | - | 0.0 (0.3) | - | 0.0 (0.1) | 0.00 | 0.076 |
3.3. Macroinvertebrate-Based Site Classification
Taxa | Cluster Group | p | ||||
---|---|---|---|---|---|---|
G1a | G1b | G2a | G2b | G2c | ||
Rhyacophila nigrocephala Iwata | 47 | 16 | 0 | 0 | 0 | 0.001 |
Epeorus nipponicus (Uéno) | 46 | 1 | 0 | 0 | 0 | 0.001 |
Glossosoma KUa | 44 | 4 | 0 | 0 | 0 | 0.001 |
Drunella aculea (Allen) | 44 | 1 | 0 | 0 | 0 | 0.001 |
Hydropsyche orientalis Martynov | 40 | 7 | 1 | 1 | 0 | 0.001 |
Uracanthella punctisetae (Matsumura) | 21 | 48 | 6 | 6 | 0 | 0.001 |
Hydropsyche valvata Martynov | 6 | 46 | 2 | 9 | 0 | 0.001 |
Cheumatopsyche brevilineata Iwata | 15 | 41 | 5 | 10 | 0 | 0.001 |
Hydropsyche kozhantschikovi Martynov | 21 | 40 | 3 | 16 | 0 | 0.001 |
Psychomyia sp. | 0 | 32 | 1 | 5 | 0 | 0.001 |
Ephemera orientalis McLachlan | 2 | 20 | 41 | 5 | 2 | 0.001 |
Ecdyonurus levis (Navás) | 5 | 28 | 40 | 1 | 0 | 0.001 |
Ecdyonurus joernensis Bengtsson | 0 | 12 | 25 | 1 | 0 | 0.001 |
Mataeopsephus KUa | 0 | 16 | 23 | 0 | 0 | 0.001 |
Asellus sp. | 0 | 2 | 11 | 3 | 6 | 0.001 |
Hirudo nipponia Whitman | 1 | 10 | 2 | 28 | 4 | 0.001 |
Chironomini sp. | 1 | 7 | 9 | 27 | 21 | 0.001 |
Limnodrilus gotoi Hatai | 5 | 12 | 18 | 23 | 9 | 0.001 |
Micronecta sedula Horváth | 0 | 0 | 0 | 0 | 20 | 0.001 |
Physa acuta Draparnaud | 2 | 3 | 2 | 12 | 16 | 0.001 |
Micronecta sp. | 0 | 0 | 5 | 0 | 5 | 0.007 |
Total number of significant indicator species | 12 | 21 | 8 | 3 | 3 | - |
3.4. Environmental Variables Affecting Macroinvertebrate Distributions
Variables | Axis 1 | Axis 2 | Axis 3 |
---|---|---|---|
(a) Correlation coefficients | |||
Altitude | 0.793 ** | 0.236 ** | 0.013 |
Stream order | −0.105 ** | −0.658 ** | 0.099 ** |
% Urban | −0.218 ** | 0.134 ** | −0.317 ** |
% Agriculture | −0.199 ** | −0.273 ** | 0.133 ** |
% Forest | 0.504 ** | 0.055 | 0.266 ** |
Water velocity | 0.662 ** | −0.054 | −0.510 ** |
% Fine particles | −0.744 ** | 0.325 ** | −0.076 * |
% Coarse particles | 0.747 ** | −0.327 ** | 0.075 * |
pH | 0.011 | −0.236 ** | 0.007 |
DO | 0.304 ** | −0.467 ** | −0.166 ** |
BOD | −0.550 ** | 0.164 ** | −0.370 ** |
EC | −0.196 ** | −0.278 ** | −0.116 ** |
TN | −0.463 ** | 0.266 ** | −0.387 ** |
TP | −0.373 ** | 0.229 ** | −0.314 ** |
(b) Summary of CCA results | |||
Eigenvalue | 0.281 | 0.101 | 0.073 |
% variance explained in taxa data | 9.8 | 3.5 | 2.5 |
Cumulative % variance explained | 9.8 | 13.3 | 15.9 |
p value | 0.010 | 0.010 | 0.010 |
Total variance | 2.869 | - | - |
4. Discussion
4.1. Macroinvertebrate Taxonomic Composition
4.2. Environmental Relationships with Macroinvertebrate Distribution
4.3. Considerations to Improve Macroinvertebrate Biomonitoring Programs
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Code | Taxon |
---|---|
Phylum Platyhelminthes | |
DugSp | Dugesia sp. |
Phylum Mollusca | |
SemLi | Semisulcospira libertina (Gould) |
PhyAc | Physa acuta Draparnaud |
Phylum Annelida | |
LimGo | Limnodrilus gotoi Hatai |
HirNi | Hirudo nipponia Whitman |
Phylum Arthropoda | |
Class Crustacea | |
AseSp | Asellus sp. |
GamSp | Gammarus sp. |
Class Insecta | |
Order Ephemeroptera | |
BaeTu | Baetiella tuberculata (Kazlauskas) |
BaeFu | Baetis fuscatus (Linnaeus) |
BaeUr | Baetis ursinus Kazlauskas |
LabAt | Labiobaetis atrebatinus (Eaton) |
NigBa | Nigrobaetis bacillus (Kluge) |
EcdBa | Ecdyonurus bajkovae Kluge |
EcdJo | Ecdyonurus joernensis Bengtsson |
EcdKi | Ecdyonurus kibunensis Imanishi |
EcdLe | Ecdyonurus levis (Navás) |
EpeNi | Epeorus nipponicus (Uéno) |
EpeLa | Epeorus latifolium (Uéno) |
EpePe | Epeorus pellucidus (Brodsky) |
ChoAl | Choroterpes altioculus Kluge |
ParJa | Paraleptophlebia japonica (Matsumura) |
PotFo | Potamanthus formosus Eaton |
RhoCo | Rhoenanthus coreanus (Yoon and Bae) |
DruAc | Drunella aculea (Allen) |
EphOr | Ephemera orientalis McLachlan |
SerSe | Serratella setigera (Bajkova) |
UraPu | Uracanthella punctisetae (Matsumura) |
CaeNi | Caenis nishinoae Malzacher |
Order Hemiptera | |
MicSe | Micronecta sedula Horváth |
MicSp | Micronecta sp. |
Order Coleoptera | |
ElmSp | Elmidae sp. |
EubKa | Eubrianax KUa |
MatKa | Mataeopsephus KUa |
PseKa | Psephenoides KUa |
Order Diptera | |
AntKa | Antocha KUa |
CulSp | Culex sp. |
ChiSp | Chironomidae spp. (non-red type) |
ChiRe | Chironomini spp. (red-type) |
Order Trichoptera | |
RhyNi | Rhyacophila nigrocephala Iwata |
HydKa | Hydroptila KUa |
GloKa | Glossosoma KUa |
CheBr | Cheumatopsyche brevilineata Iwata |
CheKa | Cheumatopsyche KUa |
CheKb | Cheumatopsyche KUb |
HydKo | Hydropsyche kozhantschikovi Martynov |
HydKb | Hydropsyche KUb |
HydOr | Hydropsyche orientalis Martynov |
HydVa | Hydropsyche valvata Martynov |
MacRa | Macrostemum radiatum McLachlan |
PsySp | Psychomyia sp. |
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef]
- Li, F.; Chung, N.; Bae, M.-J.; Kwon, Y.-S.; Park, Y.-S. Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshwater Biol. 2012, 57, 2107–2124. [Google Scholar] [CrossRef]
- Dudgeon, D. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Annu. Rev. Ecol. Syst. 2000, 31, 239–263. [Google Scholar] [CrossRef]
- De Silva, S.S.; Abery, N.W.; Nguyen, T.T.T. Endemic freshwater finfish of Asia: Distribution and conservation status. Divers. Distrib. 2007, 13, 172–184. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.E.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Strayer, D.L. Challenges for freshwater invertebrate conservation. J. N. Am. Benthol. Soc. 2006, 25, 271–287. [Google Scholar] [CrossRef]
- Buss, D.F.; Baptista, D.F.; Silveira, M.P.; Nessimian, J.L.; Dorvillé, L.F.M. Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia 2002, 481, 125–136. [Google Scholar] [CrossRef]
- Bott, T.L.; Brock, J.T.; Dunn, C.S.; Naiman, R.J.; Ovink, R.W.; Petersen, R.C. Benthic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 1985, 220, 109–117. [Google Scholar] [CrossRef]
- Merz, J.R.; Ochikubo Chan, L.K. Effects of gravel augmentation on macroinvertebrate assemblages in a regulated California river. River Res. Appl. 2005, 21, 61–74. [Google Scholar] [CrossRef]
- Nelson, S.M.; Lieberman, D.M. The influence of flow and other environmental factors on benthic invertebrates in the Sacramento River, USA. Hydrobiologia 2002, 489, 117–129. [Google Scholar] [CrossRef]
- Jiang, X.M.; Xiong, J.; Qiu, J.W.; Wu, J.M.; Wang, J.W.; Xie, Z.C. Structure of macroinvertebrate communities in relation to environmental variables in a subtropical Asian river system. Int. Rev. Hydrobiol. 2010, 95, 42–57. [Google Scholar] [CrossRef]
- Vought, L.B.M.; Kullberg, A.; Petersen, R.C. Effect of riparian structure, temperature and channel morphometry on detritus processing in channelized and natural woodland streams in southern Sweden. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 273–285. [Google Scholar] [CrossRef]
- Townsend, C.R.; Hildrew, A.G.; Francis, J. Community structure in some southern English streams: The influence of physicochemical factors. Freshw. Biol. 1983, 13, 521–544. [Google Scholar] [CrossRef]
- Richards, C.; Haro, R.J.; Johnson, L.B.; Host, G.E. Catchment and reach-scale properties as indicator of macroinvertebrate species traits. Freshw. Biol. 1997, 37, 219–230. [Google Scholar] [CrossRef]
- Sandin, L. Benthic macroinvertebrates in Swedish streams: Community structure, taxon richness, and environmental relations. Ecography 2003, 26, 269–282. [Google Scholar] [CrossRef]
- Leps, M.; Tonkin, J.D.; Dahm, V.; Haase, P.; Sundermann, A. Disentangling environmental drivers of benthic invertebrate assemblages: The role of spatial scale and riverscape heterogeneity in a multiple stressor environment. Sci. Total Environ. 2015, 536, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Heino, J. Biodiversity of aquatic insects: Spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshw. Rev. 2009, 2, 1–29. [Google Scholar] [CrossRef]
- Shah, D.N.; Tonkin, J.D.; Haase, P.; Jähnig, S.C. Latitudinal patterns and large-scale environmental determinants of stream insect richness across Europe. Limnologica 2015, 55, 33–43. [Google Scholar] [CrossRef]
- Rossaro, B.; Pietrangelo, A. Macroinvertebrate distribution in streams: A comparison of CA ordination with biotic indices. Hydrobiologia 1993, 263, 109–118. [Google Scholar] [CrossRef]
- Rosenberg, D.M.; Resh, V.H. Freshwater Biomonitoring and Benthic Macroinvertebrates; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- Charvet, S.; Statzner, B.; Usseglio-Polatera, P.; Dumont, B. Traits of benthic macroinvertebrates in semi-natural French streams: An initial application to biomonitoring in Europe. Freshw. Biol. 2000, 43, 277–296. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). The Meteorological Yearbook in Korea; KMA: Seoul, Korea, 2010. (in Korean) [Google Scholar]
- Jeong, K.S.; Hong, D.G.; Byeon, M.S.; Jeong, J.C.; Kim, H.G.; Kim, D.K.; Joo, G.J. Stream modification patterns in a river basin: Field survey and self-organizing map (SOM) application. Ecol. Inform. 2010, 5, 293–303. [Google Scholar] [CrossRef]
- Hwang, S.-J.; Kim, J.-Y.; Yoon, S.-A.; Kim, B.-H.; Park, M.-H.; You, K.-A.; Lee, H.-Y.; Kim, H.-S.; Kim, Y.-J.; Lee, J.; et al. Distribution of benthic diatoms in Korean rivers and streams in relation to environmental variables. Ann. Limnol. Int. J. Limnol. 2011, 47, S15–S33. [Google Scholar] [CrossRef]
- Craig, D.A. Some of what you should know about water. Bull. N. Am. Benthol. Soc. 1987, 4, 178–182. [Google Scholar]
- The Ministry of Environment/National Institute of Environmental Research (MOE/NIER). Survey and Evaluation of Aquatic Ecosystem Health in Korea; MOE/NIER: Incheon, Korea, 2012. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2001. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Mielke, P.W.; Berry, K.J.; Johnson, E.S. Multiresponse permutation procedures for a priori classifications. Commun. Stat. 1976, A5, 1409–1424. [Google Scholar] [CrossRef]
- Zimmerman, G.M.; Goetz, H.; Mielke, P.W. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology 1985, 66, 606–611. [Google Scholar] [CrossRef]
- Dufrene, M.; Legendre, P. Species assemblages and indicator species: The need for flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Petersen, W.T.; Keister, J.E. Interannual variability in copepod community composition at a coastal station in the northern California Current: A multivariate approach. Deep Sea Res. 2003, 50, 2499–2517. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. Multivariate Analysis of Ecological Data (Version 4.25); MjM Software: Gleneden Beach, OR, USA, 1999. [Google Scholar]
- Wang, X.; Cai, Q.; Tang, T.; Yang, S.; Li, F. Spatial distribution of benthic macroinvertebrates in the Erhai basin of southwestern China. J. Freshw. Ecol. 2012, 27, 89–96. [Google Scholar] [CrossRef]
- Lee, S.-W.; Hwang, S.-J.; Lee, J.-K.; Jung, D.-I.; Park, Y.-J.; Kim, J.-T. Overview and application of the National Aquatic Ecological Monitoring Program (NAEMP) in Korea. Ann. Limnol. Int. J. Limnol. 2011, 47, S3–S14. [Google Scholar] [CrossRef]
- Hoang, T.H.; Lock, K.; Chi Dang, K.; de Pauw, N.; Goethals, P.L.M. Spatial and temporal patterns of macroinvertebrate communities in the Du River Basin in Northern Vietnam. J. Freshw. Ecol. 2010, 25, 637–647. [Google Scholar] [CrossRef]
- Bae, M.-J.; Kwon, Y.; Hwang, S.-J.; Con, T.-S.; Yang, H.-J.; Kwak, I.-S.; Park, J.-H.; Ham, S.-A.; Park, Y.-S. Relationships between three major stream assemblages and their environmental factors in multiple spatial scales. Ann. Limnol. Int. J. Limnol. 2011, 47, S91–S105. [Google Scholar] [CrossRef]
- Jacobsen, D.; Cressa, C.; Mathooko, J.M.; Dudgeon, D. Macroinvertebrates: Composition, life histories and production. In Aquatic Ecosystems: Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier Science: London, UK, 2008; pp. 65–105. [Google Scholar]
- Hoang, D.H.; Bae, Y.J. Aquatic insect diversity in a tropical Vietnamese stream in comparison with that in a temperate Korean stream. Limnology 2006, 7, 45–55. [Google Scholar] [CrossRef]
- Cao, Y.; Williams, D.D.; Williams, N.E. How important rare species in aquatic community ecology and bioassessment? Limnol. Oceanogr. 1998, 43, 1403–1409. [Google Scholar] [CrossRef]
- Nijboer, R.C.; Schmidt-Kloiber, A. The effect of excluding taxa with low abundances or taxa with small distribution ranges on ecological assessment. Hydrobiologia 2004, 516, 347–363. [Google Scholar] [CrossRef]
- Braccia, A.; Voshell, J.R. Environmental factors accounting for benthic macroinvertebrate assemblage structure at the sample scale in streams subjected to a gradient of cattle grazing. Hydrobiologia 2006, 573, 55–73. [Google Scholar] [CrossRef]
- Soininen, J.; Paavola, R.; Muotka, T. Benthic diatom communities in boreal streams: Community structure in relation to environmental and spatial gradients. Ecography 2004, 27, 330–342. [Google Scholar] [CrossRef]
- Mikulyuk, A.; Sharma, S.; Egeren, S.V.; Erdmann, E.; Nault, M.E.; Hauxwell, J. The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Can. J. Fish. Aquat. Sci. 2011, 68, 1778–1789. [Google Scholar] [CrossRef]
- Stomp, M.; Huisman, J.; Mittelbach, G.G.; Litchman, E.; Klausmeier, C.A. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 2011, 92, 2096–2107. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Quintino, V.; Sampaio, L.; Freitas, R.; Neves, R. Benthic biodiversity patterns in Ria de Aveiro, Western Portugal: Environmental-biological relationships. Estuar. Coast. Shelf Sci. 2011, 95, 338–348. [Google Scholar] [CrossRef]
- Waite, I.R.; Carpenter, K.D. Associations among fish assemblage structure and environmental variables in Willamette Basin streams, Oregon. Trans. Am. Fish. Soc. 2000, 129, 754–770. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Beauchard, O.; Gagneur, J.; Brosse, S. Macroinvertebrate richness patterns in North African streams. J. Biogeogr. 2003, 30, 1821–1833. [Google Scholar] [CrossRef]
- Pan, Y.; Hill, B.H.; Husby, P.; Hall, R.K.; Kaufmann, P.R. Relationships between environmental variables and benthic diatom assemblages in California Central Valley streams (USA). Hydrobiologia 2006, 561, 119–130. [Google Scholar] [CrossRef]
- Harding, J.S.; Young, R.G.; Hayes, J.W.; Shearer, K.A.; Stark, J.D. Changes in agricultural intensity and river health along ariver continuum. Freshw. Biol. 1999, 42, 345–357. [Google Scholar] [CrossRef]
- Boyero, L.; Bosch, J. The effect of riffle-scale environmental variability on macroinvertebrate assemblages in a tropical stream. Hydrobiologia 2004, 524, 125–132. [Google Scholar] [CrossRef]
- Potapova, M.G.; Charles, D.F. Benthic diatoms in USA rivers: Distributions along spatial and environmental gradients. J. Biogeogr. 2002, 29, 167–187. [Google Scholar] [CrossRef]
- Halwas, K.; Church, M. Channel units in small, high gradient streams on Vancouver Island, British Columbia. Geomorphology 2002, 43, 243–256. [Google Scholar] [CrossRef]
- Jun, Y.-C.; Kim, N.-Y.; Kwon, S.-J.; Han, S.-C.; Hwang, I.-C.; Park, J.-H.; Won, D.-H.; Byun, M.-S.; Kong, H.-Y.; Lee, J.-E.; et al. Effects of land use on benthic macroinvertebrate communities: Comparison of two mountain streams in Korea. Ann. Limnol. Int. J. Limnol. 2011, 47, S35–S49. [Google Scholar] [CrossRef]
- Parsons, M.; Norris, R.H. The effect of habitat-specific sampling on biological assessment of water quality using a predictive model. Freshw. Biol. 1996, 36, 416–434. [Google Scholar] [CrossRef]
- Gerth, W.J.; Herlihy, A.T. Effect of sampling different habitat types in regional macroinvertebrate bioassessment surveys. J. N. Am. Benthol. Soc. 2006, 25, 501–512. [Google Scholar] [CrossRef]
- Gilles, C.L.; Hose, G.C.; Turak, E. What do qualitative rapid assessment collections of macroinvertebrates represent? A comparison with extensive quantitative sampling. Environ. Monit. Assess. 2009, 149, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Pashkevich, A.; Pavluk, T.; de Vaate, A.B. Efficiency of a standardized artificial substrate for biological monitoring of river water quality. Environ. Monit. Assess. 1996, 40, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Saliu, J.K.; Ovuorie, U.R. The artificial substrate preference of invertebrates in Ogbe Creek, Lagos, Nigeria. Life Sci. J. 2007, 4, 77–81. [Google Scholar]
- Di Sabatino, A.; Cristiano, G.; Pinna, M.; Lombardo, P.; Miccoli, F.P.; Marini, G.; Vignini, P.; Cicolani, B. Structure, functional organization and biological traits of macroinvertebrate assemblages from leaf-bags and benthic samples in a third-order stream of Central Apennines (Italy). Ecol. Indic. 2014, 46, 84–91. [Google Scholar] [CrossRef]
- Vlek, H.E.; Šporka, F.; Krno, I. Influence of macroinvertebrate sample size on bioassessment of streams. Hydrobiologia 2006, 566, 523–542. [Google Scholar] [CrossRef]
- Carter, J.L.; Resh, V.H. After site selection and before data analysis: Sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J. N. Am. Benthol. Soc. 2001, 20, 658–682. [Google Scholar] [CrossRef]
- Metzeling, L.; Miller, J. Evaluation of the sample size used for the rapid bioassessment of rivers using macroinvertebrates. Hydrobiologia 2001, 444, 159–170. [Google Scholar] [CrossRef]
- Kim, A.R.; Oh, M.W.; Kong, D.S. The influence of sample size on environmental assessment using benthic macroinvertebrates. J. Korean. Soc. Water Environ. 2013, 29, 790–798. [Google Scholar]
- Pinna, M.; Marini, G.; Mancinelli, G.; Basset, A. Influence of sampling effort on ecological descriptors and indicators in perturbed and unperturbed conditions: A study case using benthic macroinvertebrates in Mediterranean transitional waters. Ecol. Indic. 2014, 37, 27–39. [Google Scholar] [CrossRef]
- Vinson, M.R.; Hawkins, C.P. Effects of sampling area and subsampling procedure on comparisons of taxa richness among streams. J. N. Am. Benthol. Soc. 1996, 15, 392–399. [Google Scholar] [CrossRef]
- Marini, G.; Pinna, M.; Basset, A.; Mancinelli, G. Estimation of benthic macroinvertebrate taxonomic diversity: Testing the role of sampling effort in a Mediterranean transitional water ecosystem. Transit. Waters Bull. 2013, 7, 28–40. [Google Scholar]
- Buss, D.F.; Borges, E.L. Application of rapid bioassessment protocols (RBP) for benthic macroinvertebrates in Brazil: Comparison between sampling techniques and mesh sizes. Neotrop. Entomol. 2008, 37, 288–295. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, Y.-C.; Kim, N.-Y.; Kim, S.-H.; Park, Y.-S.; Kong, D.-S.; Hwang, S.-J. Spatial Distribution of Benthic Macroinvertebrate Assemblages in Relation to Environmental Variables in Korean Nationwide Streams. Water 2016, 8, 27. https://doi.org/10.3390/w8010027
Jun Y-C, Kim N-Y, Kim S-H, Park Y-S, Kong D-S, Hwang S-J. Spatial Distribution of Benthic Macroinvertebrate Assemblages in Relation to Environmental Variables in Korean Nationwide Streams. Water. 2016; 8(1):27. https://doi.org/10.3390/w8010027
Chicago/Turabian StyleJun, Yung-Chul, Nan-Young Kim, Sang-Hun Kim, Young-Seuk Park, Dong-Soo Kong, and Soon-Jin Hwang. 2016. "Spatial Distribution of Benthic Macroinvertebrate Assemblages in Relation to Environmental Variables in Korean Nationwide Streams" Water 8, no. 1: 27. https://doi.org/10.3390/w8010027
APA StyleJun, Y. -C., Kim, N. -Y., Kim, S. -H., Park, Y. -S., Kong, D. -S., & Hwang, S. -J. (2016). Spatial Distribution of Benthic Macroinvertebrate Assemblages in Relation to Environmental Variables in Korean Nationwide Streams. Water, 8(1), 27. https://doi.org/10.3390/w8010027