Spatial Patterns and Influence Factors of Conversion Coefficients between Two Typical Pan Evaporimeters in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Information and Measurements from Different Evaporimeters
2.2. Meteorological and Evaporation Data
2.3. Calculations and Analysis Method for the Kp
3. Results and Analysis
3.1. Spatial Patterns of Kp for the Two Pan Evaporimeters
3.1.1. Spatial Distribution of Pan Evaporation during the Warm Season
3.1.2. Spatial Distribution of the Correlation Coefficient during the Warm Season
3.1.3. Spatial Distribution of Kp during the Warm Season
3.1.4. Monthly Variation in Kp during the Warm Season
3.1.5. Spatial Pattern and Temporal Variability of Kp in Humid Regions during the Cold Season
3.2. Potential Factors That Influence Kp
4. Uncertainties
5. Conclusions and Suggestions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications; Springer: Heidelberg, Germany, 1982; Volume 1. [Google Scholar]
- Brutsaert, W.; Parlange, M. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30. [Google Scholar] [CrossRef]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos. 2007, 112, 1103–1118. [Google Scholar] [CrossRef]
- Li, Y.; Liang, K.; Bai, P.; Feng, A.; Liu, L.; Dong, G. The spatiotemporal variation of reference evapotranspiration and the contribution of its climatic factors in the Loess Plateau, China. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Hobbins, M.; Wood, A.; Streubel, D.; Werner, K. What Drives the Variability of Evaporative Demand across the Conterminous United States? J. Hydrometeorol. 2012, 13, 1195–1214. [Google Scholar] [CrossRef]
- Stanhill, G. Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? Agric. For. Meteorol. 2002, 112, 233–236. [Google Scholar] [CrossRef]
- Alkhafaf, S.; Wierenga, P.J.; Williams, B.C. Evaporative Flux from Irrigated Cotton as Related to Leaf Area Index, Soil Water, and Evaporative Demand. Agron. J. 1978, 70, 912–917. [Google Scholar] [CrossRef]
- Azorin-Molina, C.; Vicente-Serrano, S.M.; Sanchez-Lorenzo, A.; McVicar, T.R.; Morán-Tejeda, E.; Revuelto, J.; El Kenawy, A.; Martín-Hernández, N.; Tomas-Burguera, M. Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961–2011). J. Hydrol. 2015, 523, 262–277. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. The cause of decreased pan evaporation over the past 50 years. Science 2002, 298, 1410–1411. [Google Scholar] [PubMed]
- Liu, X.; Luo, Y.; Zhang, D.; Zhang, M.; Liu, C. Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett. 2011, 38, 142–154. [Google Scholar] [CrossRef]
- Singh, V.; Xu, C. Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrol. Process. 1997, 11, 311–323. [Google Scholar] [CrossRef]
- Fu, G.; Liu, C.; Chen, S.; Hong, J. Investigating the conversion coefficients for free water surface evaporation of different evaporation pans. Hydrol. Process. 2004, 18, 2247–2262. [Google Scholar] [CrossRef]
- Brouwer, C.; Heibloem, M. Irrigation Water Management: Irrigation Water Needs. Training Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986. [Google Scholar]
- Golubev, V.S.; Lawrimore, J.H.; Groisman, P.Y.; Speranskaya, N.A.; Zhuravin, S.A.; Menne, M.J.; Peterson, T.C.; Malone, R.W. Evaporation changes over the contiguous United States and the former USSR. Geophys. Res. Lett. 2001, 53, 323–324. [Google Scholar] [CrossRef]
- Symons, G.J. Evaporators and evaporation. Br. Rainfall 1867, 7, 9–10. [Google Scholar]
- Chen, D.; Gao, G.; Xu, C.Y.; Guo, J.; Ren, G. Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. Clim. Res. 2005, 28, 123–132. [Google Scholar] [CrossRef]
- Brustaert, W. Evaluation of some practical methods of estimating evapotranspiration in arid climates at low latitudes. Water Resour. Res. 1965, 2, 187–191. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Zuo, H.; Chen, B.; Wang, S.; Guo, Y.; Zuo, B.; Wu, L.; Gao, X. Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type. Agric. For. Meteorol. 2016, 222, 1–9. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Zhou, J.; Li, Y.; Sun, F.; Fu, G.; Li, X.; Sang, Y.F. A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J. Hydrol. 2016, 538, 82–95. [Google Scholar] [CrossRef]
- Gao, G.; Xu, C.Y.; Chen, D.; Singh, V.P. Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch. Environ. Res. Risk Assess. 2012, 26, 655–669. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D. Trend analysis of reference evapotranspiration in Northwest China: The roles of changing wind speed and surface air temperature. Hydrol. Process. 2013, 27, 3941–3948. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Li, L.; Song, K.; Jia, M. Quantitative assessment of human-induced impacts on marshes in Northeast China from 2000 to 2011. Ecol. Eng. 2014, 68, 97–104. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Climatic factors influencing changing pan evaporation across China from 1961 to 2001. J. Hydrol. 2012, 414–415, 184–193. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Yu, J. A critical overview of pan evaporation trends over the last 50 years. Clim. Chang. 2009, 97, 193–214. [Google Scholar] [CrossRef]
- Li, Y.; Liang, K.; Liu, C.; Liu, W.; Bai, P. Evaluation of different evapotranspiration products in the middle Yellow River Basin, China. Hydrol. Res. 2016, 47. [Google Scholar] [CrossRef]
- Hong, J.; Fu, G.; Guo, Z. Experimental research on the water-surface evaporation of Nansi Lake in Shandong Province. Geogr. Res. 1996, 15, 42–49. (In Chinese) [Google Scholar]
- Yang, Y.; Yang, L.; Wang, X.; Liu, J.; Qian, R. Variation Charicteristic and Influence Factors of Pan Evaporation in Xingtai of Hebei Province. J. Arid Meteorol. 2013, 31, 82–88. (In Chinese) [Google Scholar]
- Liang, L.; Li, L.; Liu, Q. Spatio-temporal variations of reference crop evapotranspiration and pan evaporation in the West Songnen Plain of China. Hydrol. Sci. J. 2011, 56, 1300–1313. [Google Scholar] [CrossRef]
- Xu, C.Y.; Gong, L.; Jiang, T.; Chen, D.; Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol. 2006, 327, 81–93. [Google Scholar] [CrossRef]
- Brutsaert, W. Use of pan evaporation to estimate terrestrial evaporation trends: The case of the Tibetan Plateau. Water Resour. Res. 2013, 49, 3054–3058. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, M.; Zhang, W. Conversion coefficient of small evaporation pan into E-601B pan in China. J. Appl. Meteorol. Sci. 2002, 13, 508–512. (In Chinese) [Google Scholar]
- Liu, X.N.; Wang, S.Q.; Wu, Z.X.; Wang, Y. Comparative analyses on two kinds of observed evaporation data in China. Q. J. Appl. Meteorol. 1998, 9, 321–328. (In Chinese) [Google Scholar]
- Liu, B.; Xu, M.; Henderson, M.; Gong, W. A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res. Atmos. 2004, 109, 1255–1263. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Chen, Y.D.; Ren, L. Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China. Stoch. Envrion. Res. Risk Assess. 2011, 25, 139–150. [Google Scholar] [CrossRef]
- Brutsaert, W. Equations for vapor flux as a fully turbulent diffusion process under diabatic conditions. Hydrol. Sci. J. 1965, 10, 11–21. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to Meteorological Instruments and Methods of Observation, 6th ed.; WMO Rep. 8; WMO: Geneva, Switzerland, 1996. [Google Scholar]
- Yu, S.L.; Brutsaert, W. Evaporation from very shallow pans. J. Appl. Meteorol. 1967, 6, 265–271. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D.; Liu, X.; Zhao, C. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J. Geogr. Sci. 2012, 22, 3–14. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Hong, H. Assessing the effect of climate change on reference evapotranspiration in China. Stoch. Envrion. Res. Risk Assess. 2013, 27, 1871–1881. [Google Scholar] [CrossRef]
- Stein, M.L. Interpolation of spatial data: Some theory for kriging. Technometrics 2015, 42, 436–437. [Google Scholar]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Linacre, E.T. Estimating U.S. Class A Pan Evaporation from Few Climate Data. Water Int. 1994, 19, 5–14. [Google Scholar] [CrossRef]
- Lim, W.H.; Roderick, M.L.; Hobbins, M.T.; Wong, S.C.; Farquhar, G.D. The energy balance of a US Class A evaporation pan. Agric. For. Meteorol. 2013, 182–183, 314–331. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakes: The Physical Science Basis; Contribution of Working Group I to the IPCC Fifth Assessment Report Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From dimming to brightening: Decadal changes in surface solar radiation. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Hayasaka, T.; Kawamoto, K.; Shi, G.; Ohmura, A. Importance of aerosols in satellite-derived estimates of surface shortwave irradiance over China. Geophys. Res. Lett. 2006, 33, 178–196. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Flügel, W.A.; Sanchez-Lorenzo, A.; Yan, Y.; Huang, J.; Martin-Vide, J. From brightening to dimming in sunshine duration over the eastern and central Tibetan Plateau (1961–2005). Theor. Appl. Climatol. 2010, 101, 445–457. [Google Scholar] [CrossRef]
- Brutsaert, W.; Yu, S.L. Mass transfer aspects of pan evaporation. J. Appl. Meteorol. 1968, 7, 563–566. [Google Scholar] [CrossRef]
Evaporimeter Name | Size | Description |
---|---|---|
Class-A | Area: 12.56 ft2 (diameter: 4 ft) Depth: 10 in | Supported by a wood frame and the bottom is 5 cm higher than ground, popular in USA. |
GGI-3000 | Area: 3000 cm2 Depth: 60 cm (cylinder) C + 8.7 cm (circular cone) | Buried in the ground with rim about 7.5 cm above the ground level, popular in Russian. |
φ20 | Area: 314 cm2 (diameter: 20 cm) Depth: 10 cm | Rim is 70 cm from the ground, in every meteorological station in China. |
E601B | Same as GGI-3000 | Buried like GGI-3000, fiberglass material, surrounded by water and soil circle. Installed in every meteorological station from 1998. |
Region | VP (kPa) | T (°C) | U2 (m/s) | Rs (MJ/m2/Day) | Pre (mm/a) | ETref (mm/a) | AI |
---|---|---|---|---|---|---|---|
NW (n = 57) | 0.76 | 8.45 | 1.65 | 15.60 | 137.03 | 1078.22 | 7.87 |
NC (n = 39) | 0.82 | 9.12 | 1.72 | 15.99 | 265.80 | 1088.08 | 4.09 |
NCP (n = 119) | 1.04 | 9.12 | 1.91 | 13.95 | 494.26 | 938.91 | 1.90 |
NE (n = 48) | 0.80 | 2.52 | 2.14 | 13.45 | 442.05 | 779.81 | 1.76 |
E (n = 83) | 1.71 | 16.43 | 1.62 | 11.96 | 1164.64 | 902.78 | 0.78 |
SE (n = 67) | 2.17 | 20.35 | 1.30 | 11.85 | 1728.42 | 948.11 | 0.55 |
SW (n = 103) | 1.70 | 16.27 | 1.16 | 12.02 | 1179.91 | 886.25 | 0.75 |
TP (n = 57) | 1.32 | 11.78 | 0.95 | 15.34 | 1035.75 | 941.24 | 0.91 |
Seasons | Regions | E20 | EE601B | R2 | Kp |
---|---|---|---|---|---|
Warm | NW | 1613 (739, 5573) | 921 (470, 2831) | 0.89 (0.67, 0.97) | 0.58 (0.50, 0.67) |
NC | 1363 (832, 2382) | 814 (477, 1436) | 0.94 (0.86, 0.99) | 0.61 (0.51, 0.70) | |
NCP | 1123 (648, 2166) | 635 (386, 1107) | 0.91 (0.52, 0.98) | 0.57 (0.47, 0.92) | |
NE | 1004 (641, 1425) | 543 (329, 803) | 0.91 (0.68, 0.98) | 0.55 (0.46, 0.62) | |
E | 872 (645, 1236) | 524 (401, 792) | 0.87 (0.67, 0.97) | 0.60 (0.51, 0.75) | |
SE | 847 (468, 1033) | 526 (304, 740) | 0.89 (0.74, 0.97) | 0.62 (0.53, 0.77) | |
SW | 752 (498, 1159) | 472 (323, 708) | 0.87 (0.57, 0.98) | 0.63 (0.49, 0.89) | |
TP | 890 (521, 1766) | 620 (328, 1288) | 0.84 (0.48, 0.97) | 0.62 (0.51, 0.74) | |
National | 1014 (468, 5573) | 597 (304, 2831) | 0.89 (0.48, 0.99) | 0.60 (0.46, 0.92) | |
Cold | E | 543 (402, 681) | 345 (278, 419) | 0.93 (0.83, 0.98) | 0.66 (0.55, 0.80) |
SE | 666 (403, 1224) | 444 (250, 819) | 0.90 (0.74, 0.97) | 0.68 (0.58, 0.80) | |
SW | 692 (312, 1466) | 440 (218, 889) | 0.92 (0.76, 0.99) | 0.67 (0.49, 0.80) | |
Humid | 664 (312, 1466) | 427 (218, 921) | 0.92 (0.74, 0.99) | 0.66 (0.49, 0.81) |
Variables and Regions | Tmean | RH | VPD | U2 | Elev | Rn | Combined |
---|---|---|---|---|---|---|---|
NW (n = 1528) | −0.04 | 0.34 a | −0.14 a | −0.04 | −0.12 a | −0.12 a | - |
(0.3) | (11.2) | (0.5) | (0.8) | (1.4) | (1.2) | (15.2) | |
NC (n = 984) | −0.21 a | 0.46 a | −0.4 a | −0.04 | 0.1 b | −0.36 a | - |
(21) | (0.1) | (4.5) | (5.8) | (32) | |||
NCP (n = 3065) | −0.03 | 0.21 a | −0.19 a | −0.04 b | −0.08 a | −0.24 a | - |
(3.3) | (0.8) | (0.4) | (0.5) | (5.5) | (10.4) | ||
NE (n = 973) | 0.04 | 0.22 a | −0.16 a | −0.16 a | −0.04 | −0.3 a | - |
(8.6) | (0.6) | (8.8) | (17.7) | ||||
E (n = 3858) | −0.3 a | 0.17 a | −0.33 a | −0.15 a | 0.04 b | −0.43 a | - |
(3) | (0.9) | (2.8) | (0.4) | (18.1) | (25.2) | ||
SE (n = 3207) | −0.33 a | −0.03 | −0.23 a | 0.06 b | 0.01 | −0.35 a | - |
(0.3) | (1.1) | (0.3) | (0.7) | (12.2) | (14.5) | ||
SW (n = 4688) | −0.23 a | 0.25 a | −0.32 a | −0.11 a | −0.05 a | −0.35 a | - |
(0.5) | (3.9) | (2.2) | (0.3) | (12.2) | (19.1) | ||
TP (n = 1408) | 0.3 a | 0.42 a | −0.21 a | −0.06 b | −0.21 a | 0.06 b | - |
(17.7) | (1.9) | (2.8) | (0.4) | (22.6) | |||
National (n = 19,848) | −0.17 a | 0.33 a | −0.33 a | −0.15 a | −0.06 a | −0.4 a | - |
(0.2) | (4.4) | (1.4) | (0.3) | (1.3) | (15.5) | (23.1) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, C.; Liang, K. Spatial Patterns and Influence Factors of Conversion Coefficients between Two Typical Pan Evaporimeters in China. Water 2016, 8, 422. https://doi.org/10.3390/w8100422
Li Y, Liu C, Liang K. Spatial Patterns and Influence Factors of Conversion Coefficients between Two Typical Pan Evaporimeters in China. Water. 2016; 8(10):422. https://doi.org/10.3390/w8100422
Chicago/Turabian StyleLi, Yanzhong, Changming Liu, and Kang Liang. 2016. "Spatial Patterns and Influence Factors of Conversion Coefficients between Two Typical Pan Evaporimeters in China" Water 8, no. 10: 422. https://doi.org/10.3390/w8100422
APA StyleLi, Y., Liu, C., & Liang, K. (2016). Spatial Patterns and Influence Factors of Conversion Coefficients between Two Typical Pan Evaporimeters in China. Water, 8(10), 422. https://doi.org/10.3390/w8100422