Nonlinear Changes in Land Cover and Sediment Runoff in a New Zealand Catchment Dominated by Plantation Forestry and Livestock Grazing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Cover/Use and Disturbance Index
2.3. Physiographic Data
2.4. River Network and Connectivity
- Pixels with slope >5° along the flow direction were assigned a “connected” value.
- If slope <5° for at least two 15 m pixels along the flow direction, then a “non-connected” value was assigned.
- Pixels immediately adjacent to the river (within the floodplain buffer) were assigned a “connected” value, regardless of slope.
2.5. Hydrologic and Water Quality Data
2.6. Time-Series and Statistical Analyses
3. Results
3.1. Land Use and Disturbance at the Sub-Catchment Scale
3.2. Landscape Connectivity
3.3. Physiographic and Hydrologic Effects on Land Disturbance
3.4. TSS Spatiotemporal Dynamics
4. Discussion
4.1. Connections among Land Use, Climate, Disturbance, and Sediment Runoff
4.2. Landscape–River Connectivity
4.3. Nonlinear Changes
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Tong, S.T.Y.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef]
- Phillips, J.D. Sources of nonlinearity and complexity in geomorphic systems. Progress Phys. Geogr. 2003, 27, 1–23. [Google Scholar] [CrossRef]
- Quinn, J.M.; Cooper, A.B.; Davies-Colley, R.J.; Rutherford, J.C.; Williamson, R.B. Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. N. Z. J. Mar. Freshw. Res. 1997, 31, 579–597. [Google Scholar] [CrossRef]
- Schilling, K.E.; Isenhart, T.M.; Palmer, J.A.; Wolter, C.F.; Spooner, J. Impacts of land-cover change on suspended sediment transport in two agricultural watersheds. J. Am. Water Res. Assoc. 2011, 47, 672–686. [Google Scholar] [CrossRef]
- New Zealand Land Cover Database; Landcare Research (LCR): Lincoln, New Zealand, 2015.
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 national land cover database for the conterminous United States—Representing a decade of land cover change information. Photogr. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- De Beurs, K.M.; Owsley, B.C.; Julian, J.P. Disturbance analyses of forests and grasslands with MODIS and Landsat in New Zealand. Inter. J. Appl. Earth Obs. Geoinfor. 2016, 45, 42–54. [Google Scholar] [CrossRef]
- Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity? Agric. Ecosyst. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Julian, J.P.; Davies-Colley, R.J.; Gallegos, C.L.; Tran, T.V. Optical water quality of inland waters: A landscape perspective. Ann. Assoc. Am. Geogr. 2013, 103, 309–318. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Hunter, H.M.; Walton, R.S. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the great barrier reef, Australia. J. Hydrol. 2008, 356, 131–146. [Google Scholar] [CrossRef]
- Knox, J.C. Valley alluviation in southwestern Wisconsin. Ann. Assoc. Am. Geogr. 1972, 62, 401–410. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Croke, J.C.; Hairsine, P.B. Sediment delivery in managed forests: A review. Environ. Rev. 2006, 14, 59–87. [Google Scholar] [CrossRef]
- Kreutzweiser, D.P.; Capell, S.S. Fine sediment deposition in streams after selective forest harvesting without riparian buffers. Can. J. For. Res. 2001, 31, 2134–2142. [Google Scholar] [CrossRef]
- Neal, C.; Reynolds, B.; Wilkinson, J.; Hill, T.; Neal, M.; Hill, S.; Harrow, M. The impacts of conifer harvesting on runoff water quality: A regional survey for Wales. Hydrol. Earth Sys. Sci. 1998, 2, 323–344. [Google Scholar] [CrossRef]
- Fahey, B.; Marden, M.; Phillips, C. Sediment yields from plantation forestry and pastoral farming, coastal Hawke’s Bay, North Island, New Zealand. J. Hydrol. 2003, 42, 27–38. [Google Scholar]
- Fransen, P.J.B.; Phillips, C.J.; Fahey, B.D. Forest road erosion in New Zealand: Overview. Earth Surf. Process. Landf. 2001, 26, 165–174. [Google Scholar] [CrossRef]
- Motha, J.A.; Wallbrink, P.J.; Hairsine, P.B.; Grayson, R.B. Determining the sources of suspended sediment in a forested catchment in southeastern Australia. Water Resour. Res. 2003, 39, 1056–1069. [Google Scholar] [CrossRef]
- Bartley, R.; Corfield, J.P.; Abbott, B.N.; Hawdon, A.A.; Wilkinson, S.N.; Nelson, B. Impacts of improved grazing land management on sediment yields, part 1: Hillslope processes. J. Hydrol. 2010, 389, 237–248. [Google Scholar] [CrossRef]
- Daniel, J.A.; Phillips, W.A.; Northup, B.K. Influence of summer management practices of grazed wheat pastures on runoff, sediment, and nutrient losses. Trans. ASABE 2006, 49, 349–355. [Google Scholar] [CrossRef]
- Quinn, J.M.; Stroud, M.J. Water quality and sediment and nutrient export from New Zealand hill-land catchments of contrasting land use. N. Z. J. Mar Freshw. Res. 2002, 36, 409–429. [Google Scholar] [CrossRef]
- McDowell, R.W. Grazed Pastures and Surface Water Quality; Nova Science Publishers: New York, NY, USA, 2008. [Google Scholar]
- Peters, D.C.; Bestelmeyer, B.; Turner, M. Cross-scale interactions and changing pattern-process relationships: Consequences for system dynamics. Ecosystems 2007, 10, 790–796. [Google Scholar] [CrossRef]
- Marston, R.A. Geomorphology and vegetation on hillslopes: Interactions, dependencies, and feedback loops. Geomorphology 2010, 116, 206–217. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Mannering, J.V. Relation of soil properties to its erodibility. Soil Sci. Soc. Am. J. 1969, 33, 131–137. [Google Scholar] [CrossRef]
- Elmore, A.J.; Julian, J.P.; Guinn, S.M.; Fitzpatrick, M.C. Potential stream density in mid-Atlantic U.S. Watersheds. PLoS ONE 2013, 8, e74819. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.R.; Dietrich, W.E. Channel initiation and the problem of landscape scale. Science 1992, 255, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Wohl, E. Rivers in the Landscape; WILEY Blackwell: Chichester, UK, 2014; p. 318. [Google Scholar]
- Julian, J.P.; Elmore, A.J.; Guinn, S.M. Channel head locations in forested watersheds across the mid-Atlantic united states: A physiographic analysis. Geomorphology 2012, 177–178, 194–203. [Google Scholar] [CrossRef]
- Gergel, S.E.; Turner, M.G.; Miller, J.R.; Melack, J.M.; Stanley, E.H. Landscape indicators of human impacts to riverine systems. Aquat. Sci. 2002, 64, 118–128. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Bracken, L.J.; Croke, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol. Process. 2007, 21, 1749–1763. [Google Scholar] [CrossRef]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surf. Process. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Palmer, D.; Dymond, J.; Basher, L. Assessing Erosion in the Waipa Catchment Using the New Zealand Empirical Erosion Model (NZEEM®), Highly Erodible Land (HEL), and SedNetNZ Models; Landcare Research: Lincoln, New Zealand, 2013; p. 31. [Google Scholar]
- Uriarte, M.; Yackulic, C.B.; Lim, Y.; Arce-Nazario, J.A. Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landsc. Ecol. 2011, 26, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Fryirs, K.A.; Brierley, G.J.; Preston, N.J.; Kasai, M. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena 2007, 70, 49–67. [Google Scholar] [CrossRef]
- Walling, D.E. Scale problems in hydrology the sediment delivery problem. J. Hydrol. 1983, 65, 209–237. [Google Scholar] [CrossRef]
- Buikema, R. A Conceptualisation of Strategic Riparian Management Using Geomorphology and Spatio-Temporal Analysis: Hoteo River Catchment, Auckland. Master’s Thesis, The University of Auckland, Auckland, New Zealand, 2012. [Google Scholar]
- Lobser, S.; Cohen, W. MODIS tasselled cap: Land cover characteristics expressed through transformed MODIS data. Int. J. Remote Sens. 2007, 28, 5079–5101. [Google Scholar] [CrossRef]
- Webb, T.H.; Wilson, A.D. A Manual of Land Characteristics for Evaluation of Rural Land; Manaaki Whenua Press: Lincoln, New Zealand, 1995. [Google Scholar]
- Snelder, T.H.; Biggs, B.J.F.; Weatherhead, M. New Zealand River Environment Classification User Guide; National Institute of Water and Atmospheric Research: Wellington, New Zealand, 2004. [Google Scholar]
- Davies-Colley, R.J.; Smith, D.G.; Ward, R.C.; Bryers, G.G.; McBride, G.B.; Quinn, J.M.; Scarsbrook, M.R. Twenty years of new Zealand’s national rivers water quality network: Benefits of careful design and consistent operation. J. Am. Water Resour. Assoc. 2011, 47, 750–771. [Google Scholar] [CrossRef]
- Ballantine, D.; Hughes, A.; Davies-Colley, R. Mutual relationships of suspended sediment, turbidity and visual clarity in New Zealand rivers. Proc. IAHS 2015, 367, 265–271. [Google Scholar] [CrossRef]
- Gray, J.R.; Simões, F.J.M. Estimating sediment discharge. In Sedimentation Engineering; American Society of Civil Engineering Manuals and Reports on Engineering Practice: Reston, VA, USA, 2008; pp. 1067–1088. [Google Scholar]
- Hughes, A.; Davies-Colley, R.; Elliott, A. Measurement of light attenuation extends the application of suspended sediment monitoring in rivers. In Proceedings of the International Association of Hydrological Sciences, New Orleans, LA, USA, 11–14 December 2014; IAHS: New Orleans, LA, USA, 2014; Volume 367, pp. 170–176. [Google Scholar]
- Cleveland, W.S.; Devlin, S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Eaton, A.D.; Franson, M.A.H. Standard Methods for the Examination of Water & Wastewater; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Moore, R.D.; Spittlehouse, D.L.; Story, A. Riparian microclimate and stream temperature response to forest harvesting: A review. J. Am. Water Resour. Assoc. 2005, 41, 813–834. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration of time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Anaheim, CA, USA, 1993; pp. 179–186. [Google Scholar]
- World Meteorological Organization. Standardized Precipitation Index User Guide; Svoboda, M., Hayes, M., Wood, D., Eds.; WMO-No. 1090; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Muggeo, V.M.R. Segmented: An R package to fit regression models with broken-line relationships. R News 2008, 8, 20–25. [Google Scholar]
- Lynn, I.; Manderson, A.; Page, M.; Harmsworth, G.; Eyles, G.; Douglas, G.; Mackay, A.; Newsome, P. Updating and Producing the Land Use Capability Survey Handbook, 3rd ed.; Landcare Research: Lincoln, New Zealand, 2009; p. 163. [Google Scholar]
- Arthur, M.A.; Coltharp, G.B.; Brown, D.L. Effects of best management practices on forest streamwater quality in eastern Kentucky. J. Am. Water Resour. Assoc. 1998, 34, 481–495. [Google Scholar] [CrossRef]
- Swank, W.T.; Vose, J.M.; Elliott, K.J. Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a southern Appalachian catchment. Forest Ecol. Manag. 2001, 143, 163–178. [Google Scholar] [CrossRef]
- McDowell, R.W. Phosphorus and sediment loss in a catchment with winter forage grazing off cropland by dairy cattle. J. Environ. Qual. 2006, 35, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, R.M.; Wilcock, R.J.; Smith, L.C.; Tikkisetty, B.; Thorrold, B.S.; Costall, D. Linkages between land management activities and water quality in an intensively farmed catchment in southern New Zealand. Agric. Ecosys. Environ. 2007, 118, 211–222. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Clim. Change 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Julian, J.P.; de Beurs, K.M.; Owsley, B.; Davies-Colley, R.J.; Ausseil, A.G.E. River water quality changes in New Zealand over 26 years (1989–2014): Response to land use and land disturbance. Hydrol. Earth Syst. Sci. Discuss. 2016, 2016, 1–69. [Google Scholar] [CrossRef]
- Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena 2003, 51, 297–314. [Google Scholar] [CrossRef]
- Dymond, J.R.; Ausseil, A.-G.; Shepherd, J.D.; Buettner, L. Validation of a region-wide model of landslide susceptibility in the Manawatu–Wanganui region of New Zealand. Geomorphology 2006, 74, 70–79. [Google Scholar] [CrossRef]
- Basher, L.R.; Hicks, D.M.; Clapp, B.; Hewitt, T. Sediment yield response to large storm events and forest harvesting, Motueka River, New Zealand. N. Z. J. Mar. Fres. Res. 2011, 45, 333–356. [Google Scholar] [CrossRef]
- Milliman, J.D.; Meade, R.H. World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Reid, L.; Page, M. Magnitude and frequency of landsliding in a large New Zealand catchment. Geomorphology 2003, 49, 71–88. [Google Scholar] [CrossRef]
- Dosskey, M.G.; Eisenhauer, D.E.; Helmers, M.J. Establishing conservation buffers using precision information. J. Soil Water Conserv. 2005, 60, 349–354. [Google Scholar]
- Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Sediment and nutrient removal in an established multi-species riparian buffer. J. Soil Water Conserv. 2003, 58, 1–8. [Google Scholar]
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; et al. Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar] [CrossRef]
- Fischer, R.A.; Fischenich, J.C. Design Recommendations for Riparian Corridors and Vegetated Buffer Strips; DTIC Document: Vicksburg, MS, USA, 2000. [Google Scholar]
- Martin-Mikle, C.J.; de Beurs, K.M.; Julian, J.P.; Mayer, P.M. Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landsc. Urban Planning 2015, 140, 29–41. [Google Scholar] [CrossRef]
Dataset | Variable(s)/type | Scale, Period | Source |
---|---|---|---|
Disturbance Index (DI) | %DI > 3/raster | aMODIS (8-day, 450 m), 2000–2014 | de Beurs et al., 2016 [10] |
Land Cover v3.3 | Vector polygon | 1:50,000, 2001–2008 | Landcare Research |
New Zealand Fundamental Soils Layers | Silt-clay%/Vector polygon | 1:50,000, 2000 | Landcare Research |
National Climate Database | Monthly precipitation totals | station, 1922–2014 | bNIWA |
Water quality data | Clarity, Turbidity, dTSS | Monthly, 2000–2014 | cNRWQN, bNIWA |
dTSS | nine monthly samples, 2012–2013 | Present study | |
Discharge, Turbidity | 5 min data, 2011–2014 | Auckland Council | |
River Environment Classification v2.0 | Stream segments/Vector line | 1:24,000, 2014 | bNIWA |
eDEM | Elevation/raster | 15 m, 2012 | Landcare Research |
Auckland 0.5 m rural aerial photos | Ortho-photography | 0.5 m, 2010–2012 | eLINZ |
Catchment | Drainage density (km/km2) | Area (km2) | Elevation (m) Min/Max Mean/SD | Slope (degrees) Min/Max Mean/SD | Land Cover (%) NF/EX HG/RE | Landscape connectivity (%) C/R/D |
---|---|---|---|---|---|---|
Hoteo | 1.6 | 264.6 | 16.9/439.2 | 3.1 × 10−3/110.0 | 15.2/21.1 | 54.0/14.0/32.0 |
118.4/59.1 | 19.8/14.8 | 60.8/2.9 | ||||
Waiteitei | 1.5 | 78.9 | 42.1/264.9 | 6.3 × 10−3/80.0 | 4.4/0.3 | 36.4/13.2/50.4 |
95.2/26.8 | 12.3/9.2 | 94.0/1.3 | ||||
Whangaripo | 1.5 | 45.7 | 23.8/439.2 | 9.8 × 10−3/102.2 | 23.0/9.2 | 63.4/15.0/21.6 |
141.3/66.1 | 23.2/14.8 | 61.0/6.8 | ||||
Waiwhiu | 1.5 | 38.8 | 33.9/401.9 | 13.4 × 10−3/110.0 | 40.4/55.8 | 79.0/16.7/4.3 |
194.7/72.2 | 30.3/14.6 | 2.8/1.3 | ||||
Wayby Valley | 1.6 | 20.4 | 21.7/244.7 | 14.0 × 10−3/103.4 | 0.0/2.2 | 33.1/12.5/54.4 |
67.5/32.1 | 12.6/11.3 | 96.8/1.0 | ||||
Saunders | 1.6 | 14.3 | 28.3/301.7 | 3.1 × 10−3/93.9 | 27.3/63.6 | 77.3/16.4/6.3 |
131.0/53.3 | 28.1/13.7 | 4.5/4.6 |
Variable | R2 | Breakpoints (SE in months) |
---|---|---|
Connected disturbance | 0.59 | March 2000 (±2), April 2005 (±3) |
May 2010 (±5), August 2012 (±6) | ||
Clarity | 0.55 | June 2000 (±2), February 2005 (±17) |
June 2010 (±4), April 2013 (±2) | ||
TSS | 0.26 | August 2002 (±6), October 2007 (±10) |
July 2008 (±8), August 2010 (±18) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamarinas, I.; Julian, J.P.; Hughes, A.O.; Owsley, B.C.; De Beurs, K.M. Nonlinear Changes in Land Cover and Sediment Runoff in a New Zealand Catchment Dominated by Plantation Forestry and Livestock Grazing. Water 2016, 8, 436. https://doi.org/10.3390/w8100436
Kamarinas I, Julian JP, Hughes AO, Owsley BC, De Beurs KM. Nonlinear Changes in Land Cover and Sediment Runoff in a New Zealand Catchment Dominated by Plantation Forestry and Livestock Grazing. Water. 2016; 8(10):436. https://doi.org/10.3390/w8100436
Chicago/Turabian StyleKamarinas, Ioannis, Jason P. Julian, Andrew O. Hughes, Braden C. Owsley, and Kirsten M. De Beurs. 2016. "Nonlinear Changes in Land Cover and Sediment Runoff in a New Zealand Catchment Dominated by Plantation Forestry and Livestock Grazing" Water 8, no. 10: 436. https://doi.org/10.3390/w8100436
APA StyleKamarinas, I., Julian, J. P., Hughes, A. O., Owsley, B. C., & De Beurs, K. M. (2016). Nonlinear Changes in Land Cover and Sediment Runoff in a New Zealand Catchment Dominated by Plantation Forestry and Livestock Grazing. Water, 8(10), 436. https://doi.org/10.3390/w8100436