Phosphorus Retention in Stormwater Control Structures across Streamflow in Urban and Suburban Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions and Sampling Design
2.2. Water Collection, Discharge Monitoring and Water Quality Analysis
2.3. Mass Balances in Ponds and Stream Reaches
2.4. Statistical Analyses
3. Results
3.1. Spatial Variability of Water Temperature, %DO, and P Concentrations
3.2. Temporal Changes in Water Temperature, Flow, %DO and P Concentrations
3.3. P Retention in SCMs/Pond and Free-Flowing Stream Reaches
4. Discussion
4.1. Roles of Stormwater Control Structures in P Retention
4.2. Possible Physical Controls on PP Retention in SCMs
4.3. Possible Biogeochemical Controls PP Retention in SCMs
5. Conclusions and Management Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- U.S. Environmental Protection Agency; Office of Water and Office of Research and Development. National Coastal Condition Assessment 2010. Available online: http://www.epa.gov/national-aquatic-resource-surveys/ncca (accessed on 30 August 2016).
- Russell, M.J.; Weller, D.E.; Jordan, T.E.; Sigwart, K.J.; Sullivan, K.J. Net anthropogenic phosphorus inputs: Spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 2008, 88, 285–304. [Google Scholar] [CrossRef]
- Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience 2001, 51, 227–234. [Google Scholar] [CrossRef]
- Bukaveckas, P.A. Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream. Environ. Sci. Technol. 2007, 41, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.J.; Flanagan, N.E.; Ho, M.C.; Pahl, J.W. Integrated stream and wetland restoration: A watershed approach to improved water quality on the landscape. Ecol. Eng. 2011, 37, 25–39. [Google Scholar] [CrossRef]
- Rücker, K.; Schrautzer, J. Nutrient retention function of a stream wetland complex—A high-frequency monitoring approach. Ecol. Eng. 2010, 36, 612–622. [Google Scholar] [CrossRef]
- Harrison, M.D.; Miller, A.J.; Groffman, P.M.; Mayer, P.; Kaushal, S.S. Hydrologic controls on nitrogen and phosphorous dynamics in relict Oxbow wetlands adjacent to an urban restored stream. J. Am. Water Resour. Assoc. 2014, 50, 1365–1382. [Google Scholar] [CrossRef]
- Newcomer-Johnson, T.A.; Kaushal, S.S.; Mayer, P.M.; Smith, R.M.; Sivirichi, G.M. Nutrient Retention in Restored Streams and Rivers: A Global Review and Synthesis. Water 2016, 8, 116. [Google Scholar] [CrossRef]
- Boesch, D.F.; Brinsfield, R.B.; Magnien, R.E. Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture. J. Environ. Qual. 2001, 30, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Mainstone, C.P.; Dils, R.M.; Withers, P.J.A. Controlling sediment and phosphorus transfer to receiving waters—A strategic management perspective for England and Wales. J. Hydrol. 2008, 350, 131–143. [Google Scholar] [CrossRef]
- Roberts, A.D.; Prince, S.D.; Jantz, C.A.; Goetz, S.J. Effects of projected future urban land cover on nitrogen and phosphorus runoff to Chesapeake Bay. Ecol. Eng. 2009, 35, 1758–1772. [Google Scholar] [CrossRef]
- Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer, T.A.; Grimm, N.B.; Ekberg, M.C. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecol. Eng. 2010, 36, 1507–1519. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Heiberg, L.; Audet, J.; Schonfeldt, B.; Fuglsang, A.; Kronvang, B.; Ovesen, N.B.; Kjaergaard, C.; Hansen, H.C.B.; Jensen, H.S. Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water. Ecol. Eng. 2012, 46, 75–87. [Google Scholar] [CrossRef]
- Kieckbusch, J.J.; Schrautzer, J. Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Sci. Total Environ. 2007, 380, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Silvennoinen, H.; Liikanen, A.; Torssonen, J.; Stange, C.F.; Martikainen, P.J. Denitrification and N2O effluxes in the Bothnian Bay (northern Baltic Sea) river sediments as affected by temperature under different oxygen concentrations. Biogeochemistry 2008, 88, 63–72. [Google Scholar] [CrossRef]
- Groffman, P.M.; Crawford, M.K. Denitrification potential in urban riparian zones. J. Environ. Qual. 2003, 32, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, T.A.; Kaushal, S.S.; Mayer, P.M.; Shields, A.R.; Canuel, E.A.; Groffman, P.M.; Gold, A.J. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams. Ecol. Monogr. 2012, 82, 449–466. [Google Scholar] [CrossRef]
- Nairn, R.W.; Mitsch, W.J. Phosphorus removal in created wetland ponds receiving river overflow. Ecol. Eng. 2000, 14, 107–126. [Google Scholar] [CrossRef]
- Venterink, H.O.; Vermaat, J.E.; Pronk, M.; Wiegman, F.; van der Lee, G.E.M.; van den Hoorn, M.W.; Higler, L.W.G.B.; Verhoeven, J.T.A. Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl. Veg. Sci. 2006, 9, 163–174. [Google Scholar] [CrossRef]
- House, W.A.; Denison, F.H. Exchange of inorganic phosphate between river waters and bed-sediments. Environ. Sci. Technol. 2002, 36, 4295–4301. [Google Scholar] [CrossRef] [PubMed]
- Groffman, P.M.; Dorsey, A.M.; Mayer, P.M. N processing within geomorphic structures in urban streams. J. N. Am. Benthol. Soc. 2005, 24, 613–625. [Google Scholar] [CrossRef]
- Kasahara, T.; Hill, A.R. Effects of riffle–step restoration on hyporheic zone chemistry in N-rich lowland streams. Can. J. Fish. Aquat. Sci. 2006, 63, 120–133. [Google Scholar] [CrossRef]
- Rao, Y.R.; Hawley, N.; Charlton, M.N.; Schertzer, W.M. Physical processes and hypoxia in the central basin of Lake Erie. Limnol. Oceanogr. 2008, 53, 2007–2020. [Google Scholar] [CrossRef]
- Duan, S.W.; Kaushal, S.S.; Groffman, P.M.; Bran, L.E.; Belt, K.T. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Newcomer-Johnson, T.A.; Kaushal, S.S.; Mayer, P.M.; Grese, M.M. Effects of stormwater management and stream engineering on watershed nitrogen retention. Biogeochemistry 2014, 121, 81–106. [Google Scholar] [CrossRef]
- Striz, E.A.; Mayer, P.M. Assessment of Near-Stream Ground Water-Surface Water Interaction (GSI) of a Degraded Stream before Restoration; EPA: Washington, DC, USA, 2008. [Google Scholar]
- Kaushal, S.S.; Delaney-Newcomb, K.; Findlay, S.E.G.; Newcomer, T.A.; Duan, S.; Pennino, M.J.; Sivirichi, G.M.; Sides-Raley, A.M.; Walbridge, M.R.; Belt, K.T. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 2014, 121, 23–44. [Google Scholar] [CrossRef]
- Mayer, P.M.; Groffman, P.M.; Striz, E.A.; Kaushal, S.S. Nitrogen dynamics at the groundwater–surface water interface of a degraded urban stream. J. Environ. Qual. 2010, 39, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.W.; Kaushal, S.S. Warming increases carbon and nutrient fluxes from sediments in streams across land use. Biogeosciences 2013, 10, 1193–1207. [Google Scholar] [CrossRef]
- Kaushal, S.S.; McDowell, W.H.; Wollheim, W.M.; Johnson, T.A.N.; Mayer, P.M.; Belt, K.T.; Pennino, M.J. Urban evolution: The role of water. Water 2015, 7, 4063–4087. [Google Scholar] [CrossRef]
- DEPRM Baltimore County Department of Environmental Protection and Management. Spring Branch Subwatershed—Small Watershed Action Plan (Addendum to the Water Quality Management Plan for Loch Raven Watershed). Available online: http://www.mde.state.md.us/programs/Water/319NonPointSource/Documents/Watershed%20Plans/A-I_EPA_Accepted_Plans/Spring_branch.pdf (accessed on 30 August 2016).
- Sivirichi, G.M.; Kaushal, S.S.; Mayer, P.M.; Welty, C.; Belt, K.T.; Newcomer, T.A.; Newcomb, K.D.; Grese, M.M. Longitudinal variability in streamwater chemistry and carbon and nitrogen fluxes in restored and degraded urban stream networks. J. Environ. Monit. 2011, 13, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Belt, K.T.; Hohn, C.; Gbakima, A.; Higgins, J.A. Identification of culturable stream water bacteria from urban, agricultural, and forested watersheds using 16S rRNA gene sequencing. J. Water Health 2007, 5, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Parks and People Foundation, Gwynns Falls Watershed Association. The Gwynns Falls Watershed Ecological Resource Atlas. Available online: http://www.beslter.org/gfatlasr/gfatlaslr.pdf (accessed on 30 August 2016).
- Fisher, G.T. Evaluation of Contributions of Leaking Water and Sewer Infrastructure in Gwynns Run and Maidens Choice Run to Streamflow in the Lower Gwynns Falls Watershed, Baltimore, Maryland. Available online: http://md.water.usgs.gov/projects/md164.html (accessed on 30 August 2016).
- Groffman, P.M.; Law, N.L.; Belt, K.T.; Band, L.E.; Fisher, G.T. Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 2004, 7, 393–403. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). ESS Method 310.2: Phosphorus, Total, Low Level (Persulfate Digestion). Available online: http://www.cromlab.es/Articulos/Metodos/LMS/Parte%203/Convencionales/LMMB%20064.pdf (accessed on 30 August 2016).
- Sharpley, A.N.; Troeger, W.W.; Smith, S.J. The measurement of bioavailable phosphorus in agricultural runoff. J. Environ. Qual. 1991, 20, 255–268. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 1962, 26, 31–36. [Google Scholar] [CrossRef]
- Stanley, DW. Pollutant removal by a stormwater dry detention pond. Water Environ. Res. 1996, 68, 1076–1083. [Google Scholar] [CrossRef]
- Ardon, M.; Morse, J.L.; Doyle, M.W.; Bernhardt, E.S. The water quality consequences of restoring wetland hydrology to a large agricultural watershed in the Southeastern coastal plain. Ecosystems 2010, 13, 1060–1078. [Google Scholar] [CrossRef]
- Kiggundu, S. The Design, Maintenance and Management of Stormwater Ponds; AV Akademikerverlag GmbH & Co. KG. Publication: Saarbrücken, Germany, 2011; pp. 154–196. [Google Scholar]
- Duan, S.-W.; Bianchi, T.S. Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the Lower Mississippi and Pearl Rivers. Estuar. Coasts 2006, 29, 427–442. [Google Scholar] [CrossRef]
- Li, Q.M.; Zhang, W.; Wang, X.X.; Zhou, Y.Y.; Yang, H.; Ji, G.L. Phosphorus in interstitial water induced by redox potential in sediment of Dianchi Lake, China. Pedosphere 2007, 17, 739–746. [Google Scholar] [CrossRef]
- Cai, Y.; Guo, L. Abundance and variation of colloidal organic phosphorus in riverine, estuarine and coastal waters in the northern Gulf of Mexico. Limnol. Oceanogr. 2009, 54, 1393–1402. [Google Scholar] [CrossRef]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on phosphate buffer mechanism. Limnol. Oceanogr. 1988, 33, 649–668. [Google Scholar] [CrossRef]
- Correll, D.L. Phosphorus: A rate limiting nutrient in surface waters. Poult. Sci. 1999, 78, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Withersa, P.J.A.; Jarvieb, H.P. Delivery and cycling of phosphorus in rivers: A review. Sci. Total Environ. 2008, 400, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen; Ecological Society of America: Washington, DC, USA, 1998; p. 12. [Google Scholar]
- Elser, J.; Bennett, E. A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Mallin, M.A.; McAuliffe, J.A.; McIver, M.R.; Mayes, D.; Hanson, M.A. High pollutant removal efficacy of a large constructed wetland leads to receiving stream Improvements. J. Environ. Qual. 2012, 41, 2046–2055. [Google Scholar] [CrossRef] [PubMed]
Land Use (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Site | Location | Context | Drainage Area (ha) | Impervious Cover (%) | Forested | High-Density Residential | Low and Medium-Density Residential | Commercial |
Pond Branch | 39°28′49″ N 76°41′16″ W | Forest | 37 | 0 | 100 | 0 | 0 | 0 |
Spring Branch * | 39°26′43.9″ N 76°37′12.9″ W | Sub-urban | 407 | 18.6 | 6.7 | 3.7 | 87.8 | 0 |
Gwynns Run ** | 39°16′41.3″ N 76°39′07.2″ W | Urban | 557 | 61.2 | 1.6 | 68.1 | 0 | 16.2 |
Watersheds | POBR (Forested) | SPBR (Suburban) | GFGR (Urban) | |||
---|---|---|---|---|---|---|
Site Types | Stream | Inline Pond | Stream | Inline SCMs | Stream | Oxbow SCMs |
t (°C) | 14.0 (1.1) NS | 13.5 (1.3) | 15.4 (0.7) NS | 14.0 (1.0) | 15.9 (0.6) NS | 17.2 (1.4) |
DO (%) | 95.8 (1.1) NS | 96.6 (1.4) | 104.1 (2.3) * | 80.7 (2.8) | 76.9 (1.9) * | 58.7 (6.5) |
PP (μg·L−1) | 26.7 (2.7)NS | 22.3 (1.9) | 30.1 (2.4)* | 58.1 (4.5) | 120.1 (6.1) * | 212.2 (12.3) |
NaOH-PP | 5.8 (0.6) NS | 5.3 (0.4) | 8.7 (0.7) * | 20.5 (1.8) | 36.8 (1.0) * | 42.3 (2.2) |
TDP (μg·L−1) | 7.6 (0.4) NS | 7.9 (0.4) | 15.2 (1.3) NS | 18.7 (2.7) | 17.1 (1.8) * | 44.9 (6.7) |
SRP (μg·L−1) | 4.5 (0.3) NS | 4.2 (0.2) | 7.1 (0.5) * | 10.3 (0.9) | 7.2 (0.4) * | 13.1 (1.6) |
Watersheds | PDBR (Forest) | SPBR (Suburban) | GFGR (Urban) | |||
---|---|---|---|---|---|---|
Site Types | Stream | In-Line Pond | Stream | In-Line SCM | Stream | Oxbow SCM |
Flow vs. t (°C) | −0.76 | −0.77 | −0.92 | −0.77 | −0.77 | |
%DO vs. t (°C) | −0.82 | −0.68 | −0.62 | −0.65 | ||
%DO vs. flow | −0.57 | −0.67 | ||||
TDP vs. %DO | −0.75 | −0.69 | −0.67 | −0.67 | ||
SRP vs. %DO | −0.74 | |||||
PP vs. flow | −0.44 | −0.41 | −0.49 | −0.40 | ||
NaOH-PP vs. PP | −0.70 | −0.56 | −0.89 | −0.91 |
Retention | Site Types | POBR (Forest) | SPBR (Suburban) | GFGR (Urban) |
---|---|---|---|---|
PP | ||||
Net retention rate | SCMs/pond | −9 to 19 (1) | −22 to 782 (−0.6) | −22 to 238 (−3) |
(mg·m−2·day−1) | Streams | −12 to 184 (5) | NA * | −136 to 203 (26) |
Retention efficiency | SCMs/pond | −389 to 62 (16) | −850 to 75 (−10) | −31 to 36 (−2) ** |
(%) | Streams | −63 to 80 (36) | NA * | −69 to 51 (13) |
TDP | ||||
Net retention rate | SCMs/pond | −0.2 to 5.2 (0.3) | −4 to 15 (0.4) | −2.9 to -0.1 (−0.5) |
(mg·m−2·day−1) | Streams | −1.3 to 1.6 (0.6) | NA * | −26 to 33 (−3) |
Retention efficiency | SCMs/pond | −8 to 74 (4) | −70 to 38 (8) | −1 to −20 (−5) |
(%) | Streams | −8 to 10 (2) | NA * | −47 to 14 (−3) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Newcomer-Johnson, T.; Mayer, P.; Kaushal, S. Phosphorus Retention in Stormwater Control Structures across Streamflow in Urban and Suburban Watersheds. Water 2016, 8, 390. https://doi.org/10.3390/w8090390
Duan S, Newcomer-Johnson T, Mayer P, Kaushal S. Phosphorus Retention in Stormwater Control Structures across Streamflow in Urban and Suburban Watersheds. Water. 2016; 8(9):390. https://doi.org/10.3390/w8090390
Chicago/Turabian StyleDuan, Shuiwang, Tamara Newcomer-Johnson, Paul Mayer, and Sujay Kaushal. 2016. "Phosphorus Retention in Stormwater Control Structures across Streamflow in Urban and Suburban Watersheds" Water 8, no. 9: 390. https://doi.org/10.3390/w8090390
APA StyleDuan, S., Newcomer-Johnson, T., Mayer, P., & Kaushal, S. (2016). Phosphorus Retention in Stormwater Control Structures across Streamflow in Urban and Suburban Watersheds. Water, 8(9), 390. https://doi.org/10.3390/w8090390