Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. The Water Quality and Hydrology Monitoring
2.3. Data Analysis and Modeling
2.4. The First-Order Kinetic Model of N Removal Applied to the HSSF-CW
3. Results
3.1. Water Balance
3.2. Influent and Effluent Nitrogen Concentrations
3.3. Nitrogen Loading and Removal Rate
3.4. Estimation of the Area-Based Constants and the Temperature Coefficients
3.5. The Influence of N Loads and DO on the Area-Based Constant
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Karl, E.; Karl, E.; Lancelot, C.; Gene, E.; Gene, E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 123, 1014–1015. [Google Scholar] [CrossRef]
- Bilgin, M.; Şimşek, İ.; Tulun, Ş. Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetlands by using Cyperus alternifolius. Ecol. Eng. 2014, 70, 362–365. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, G.; Mahmood, Q.; Yue, M. Nitrogen removal from secondary effluent by using integrated constructed wetland system. Ecol. Eng. 2011, 37, 659–662. [Google Scholar] [CrossRef]
- Liu, X.; Niu, H.; Yan, H.; Ding, Z.; Lu, F.; Ma, X.; Yang, L.; Liu, Y. Research and application of high-efficiency eco-engineering rural sewage treatment system. Trans. Chin. Soc. Agric. Eng. 2013, 29, 184–191. [Google Scholar]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Birch, G.F.; Matthai, C.; Fazeli, M.S.; Suh, J.Y. Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands 2004, 24, 459–466. [Google Scholar] [CrossRef]
- Bruch, I.; Fritsche, J.; Bänninger, D.; Alewell, U.; Sendelov, M.; Hürlimann, H.; Hasselbach, R.; Alewell, C. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresour. Technol. 2011, 102, 937–941. [Google Scholar] [CrossRef]
- Lee, S.; Maniquiz, M.C.; Kim, L.-H. Characteristics of contaminants in water and sediment of a constructed wetland treating piggery wastewater effluent. J. Environ. Sci. 2010, 22, 940–945. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Biswas, D.K.; Nian, Y.; Jiang, G. Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China. Bioresour. Technol. 2008, 99, 1656–1663. [Google Scholar] [CrossRef]
- Harada, J.; Inoue, T.; Kato, K.; Izumoto, H.; Zhang, X.; Sakuragi, H.; Wu, D.; Ietsugu, H.; Sugawara, Y. Long-term nitrogen compound removal trends of a hybrid subsurface constructed wetland treating milking parlor wastewater throughout its 7 years of operation. Water Sci. Technol. 2016, 73, 1018–1024. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Wynn, T.M.; Liehr, S.K. Development of a constructed subsurface-flow wetland simulation model. Ecol. Eng. 2001, 16, 519–536. [Google Scholar] [CrossRef]
- Kadlec, R.H. The inadequacy of first-order treatment wetland models. Ecol. Eng. 2000, 15, 105–119. [Google Scholar] [CrossRef]
- Rousseau, D.P.L.; Vanrolleghem, P.A.; De Pauw, N. Model-based design of horizontal subsurface flow constructed treatment wetlands: A review. Water Res. 2004, 38, 1484–1493. [Google Scholar] [CrossRef]
- Marsili-Libelli, S.; Checchi, N. Identification of dynamic models for horizontal subsurface constructed wetlands. Ecol. Model. 2005, 187, 201–218. [Google Scholar] [CrossRef]
- Acreman, M.C.; Miller, F. Hydrological impact assessment of wetlands. In The Global Importance of Groundwater in the 21st Century; Ragone, S., de la Hera, A., Hernandez-Mora, N., Eds.; NGWA Press: Alicante, Spain, 2007; pp. 89–92. [Google Scholar]
- Szporak-Wasilewska, S.; Piniewski, M.; Kubrak, J.; Okruszko, T. What we can learn from a wetland water balance? Narew National Park case study. Ecohydrol. Hydrobiol. 2015, 15, 136–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, T.; Carvalho, P.N.; Zhang, L.; Arias, C.A.; Chen, Z.; Brix, H. Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecol. Eng. 2016, in press. Available online: http://www.sciencedirect.com/science/article/pii/S0925857416303123 (accessed on 4 November 2016). [Google Scholar]
- Darwiche-Criado, N.; Comín, F.A.; Masip, A.; García, M.; Eismann, S.G.; Sorando, R. Effects of wetland restoration on nitrate removal in an irrigated agricultural area: The role of in-stream and off-stream wetlands. Ecol. Eng. 2016, in press. Available online: http://www.sciencedirect.com/science/article/pii/S0925857416301653 (accessed on 4 November 2016). [Google Scholar]
- Rizzo, A.; Langergraber, G. Novel insights on the response of horizontal flow constructed wetlands to sudden changes of influent organic load: A modeling study. Ecol. Eng. 2016, 93, 242–249. [Google Scholar] [CrossRef]
- McCabe, A.J.; Arnold, W.A. Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates. Chemosphere 2016, 155, 640–647. [Google Scholar] [CrossRef]
- Rice, E.; Baird, R.; Eaton, A.; Clesceri, L. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Environmental Protection Administration of China. Environmental Quality Standards for Surface Water; GB3838-2002; China Environmental Science Press: Beijing, China, 2002.
- Kim, H.W. Evaluation of Hydrology in an Agricultural Watershed and Nitrogen Removal by Constructed Wetlands. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2009. [Google Scholar]
- Dzakpasu, M.; Hofmann, O.; Scholz, M.; Harrington, R.; Jordan, S.N.; McCarthy, V. Nitrogen removal in an integrated constructed wetland treating domestic wastewater. J. Environ. Sci. Health A 2011, 46, 742–750. [Google Scholar] [CrossRef]
- Huang, J.; Cai, W.; Zhong, Q.; Wang, S. Influence of temperature on micro-environment, plant eco-physiology and nitrogen removal effect in subsurface flow constructed wetland. Ecol. Eng. 2013, 60, 242–248. [Google Scholar] [CrossRef]
- Öövel, M.; Tooming, A.; Mauring, T.; Mander, Ü. Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia. Ecol. Eng. 2007, 29, 17–26. [Google Scholar] [CrossRef]
- Toscano, A.; Langergraber, G.; Consoli, S.; Cirelli, G.L. Modelling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands. Ecol. Eng. 2009, 35, 281–289. [Google Scholar] [CrossRef]
- Faulwetter, J.L.; Gagnon, V.; Sundberg, C.; Chazarenc, F.; Burr, M.D.; Brisson, J.; Camper, A.K.; Stein, O.R. Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009, 35, 987–1004. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, S.; Song, Y.; Liu, Q.-Q.; Pang, C.-L.; Dong, R.-J. Wastewater purification experiment study of a lab-scale tidal flow constructed wetland. J. China Agric. Univ. 2011, 16, 110–116. [Google Scholar]
- Wu, H.M.; Zhang, J.; Li, W.J.; Zhang, B. Relationship between oxygen release from plants in constructed wetland and oxygen demand for pollutant degradation. Chin. J. Environ. Eng. 2010, 4, 1973–1977. [Google Scholar]
- Zhang, C. Study on Calculation Method of Saturation Values of Dissolved Oxygen in Waters. Res. Environ. Sci. 1999, 12, 54–55. [Google Scholar]
- Sun, G.; Austin, D. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study. Chemosphere 2007, 68, 1120–1128. [Google Scholar] [CrossRef]
- Nivala, J.; Wallace, S.; Headley, T.; Kassa, K.; Brix, H.; van Afferden, M.; Müller, R. Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol. Eng. 2013, 61, 544–554. [Google Scholar] [CrossRef]
- Marsili-Libelli, S. Modelling and automation of water and wastewater treatment processes. Environ. Model. Softw. 2010, 25, 613–615. [Google Scholar] [CrossRef]
- Van de Moortel, A.M.; Rousseau, D.P.; Tack, F.M.; De Pauw, N. A comparative study of surface and subsurface flow constructed wetlands for treatment of combined sewer overflows: A greenhouse experiment. Ecol. Eng. 2009, 35, 175–183. [Google Scholar] [CrossRef]
Configuration | Treatment Cell | ||
---|---|---|---|
a | b | c | |
Length (m) | 20 | 22 | 25 |
Area (m2) | 170 | 160 | 81 |
Particle density (g/m3) | 2.43 | 1.80 | 1.44 |
Main Vegetation | Iris tectorum | ||
Plant spacing (m) | 2 | 2 | 2 |
Flow (m3/Day) | a | b | c | Total | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Influent | 33 | 19 | 33 | 19 | 33 | 19 | 33 | 19 |
Rainfall | 0.46 | 0.50 | 0.43 | 0.47 | 0.22 | 0.24 | 1.11 | 1.21 |
Effluent | 33 | 19 | 33 | 19 | 33 | 19 | 33 | 19 |
Parameter | Unit | n | Influent | Effluent | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
NO3−-N | mgN∙L−1 | 38 | 3.40 | 3.44 | 1.22 | 0.92 |
NH4+-N | mgN∙L−1 | 38 | 0.36 | 0.35 | 0.27 | 0.27 |
Season | Month | n | NO3−-N (mg∙L−1) | NH4+-N (mg∙L−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Influent | Effluent | Influent | Effluent | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
Spring | 4–5 | 4 | 0.21 | 0.20 | 0.19 | 0.18 | 0.60 | 0.33 | 0.44 | 0.25 |
Summer | 6–8 | 14 | 4.52 | 3.94 | 1.39 | 1.02 | 0.34 | 0.25 | 0.28 | 0.23 |
Autumn | 9–11 | 20 | 3.25 | 3.06 | 1.31 | 0.82 | 0.32 | 0.40 | 0.23 | 0.30 |
Season | Month | n | NO3−-N | NH4+-N | ||||
---|---|---|---|---|---|---|---|---|
Loading Rate (mg∙m−2∙Day−1) | Removal (%) | Loading Rate (mg∙m−2∙Day−1) | Removal (%) | |||||
Mean | SD | Mean | SD | |||||
Spring | 4–5 | 4 | 25.8 | 25.6 | 7.4 | 75.4 | 41.9 | 27.2 |
Summer | 6–8 | 14 | 564.6 | 492.0 | 44.7 | 42.2 | 31.8 | 19.1 |
Autumn | 9–11 | 20 | 406.1 | 382.0 | 37.4 | 39.9 | 49.7 | 34.4 |
Parameter | n | θ | K (m∙Year−1) | K(20) (m∙Year−1) | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
NO3−-N | 38 | 1.004 | 27 | 26 | 27 | 26 |
NH4+-N | 38 | 0.960 | 16 | 12 | 14 | 10 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Li, W.; Zhang, Y.; Wei, J.; Lei, Y.; Zhang, M.; Pan, X.; Zhao, X.; Li, K.; Ma, W. Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model. Water 2016, 8, 514. https://doi.org/10.3390/w8110514
Cui L, Li W, Zhang Y, Wei J, Lei Y, Zhang M, Pan X, Zhao X, Li K, Ma W. Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model. Water. 2016; 8(11):514. https://doi.org/10.3390/w8110514
Chicago/Turabian StyleCui, Lijuan, Wei Li, Yaqiong Zhang, Jiaming Wei, Yinru Lei, Manyin Zhang, Xu Pan, Xinsheng Zhao, Kai Li, and Wu Ma. 2016. "Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model" Water 8, no. 11: 514. https://doi.org/10.3390/w8110514
APA StyleCui, L., Li, W., Zhang, Y., Wei, J., Lei, Y., Zhang, M., Pan, X., Zhao, X., Li, K., & Ma, W. (2016). Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model. Water, 8(11), 514. https://doi.org/10.3390/w8110514