On the Simulation of Floods in a Narrow Bending Valley: The Malpasset Dam Break Case Study
Abstract
:1. Introduction
1.1. Computational Fluid Dynamics Models in the Framework of Curved Channels
1.2. The Geomorphologic Characterization of a River Channel
2. Test Site: The Malpasset Dam in the Reyran River Valley (FR)
3. Methodology: The Three-Dimensional CFD Model
Domain Geometry: Digital Terrain Model
4. Results and Discussion
4.1. Numerical Simulation: Comparison with Field and Laboratory Data
4.2. Morphodynamic Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Camporeale, C.; Perona, C.; Porporato, A.; Ridolfi, L. Hierarchy of models for meandering rivers and related morphodynamic processes. Rev. Geophys. Geophys 2007, 45, 446–447. [Google Scholar] [CrossRef]
- Ridolfi, E.; Alfonso, L.; Di Baldassarre, G.; Dottori, F.; Russo, F.; Napolitano, F. An entropy approach for the optimization of cross-section spacing for river modelling. Hydrol. Sci. J. 2013, 59, 126–137. [Google Scholar] [CrossRef]
- Ridolfi, E.; Alfonso, L.; Di Baldassarre, G.; Napolitano, F. Optimal cross-sectional sampling for river modelling with bridges: An information theory-based method. In International Conference of Numerical Analysis and Applied Mathematics 2015 (Icnaam 2015), Proceedings of the AIP Conference, Rhodes, Greece, 22–28 September 2015; AIP Publishing: Melville, NY, USA, 2016; Volume 1738, p. 430004. [Google Scholar]
- Md Ali, A.; Solomatine, D.P.; Di Baldassarre, G. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrol. Earth Syst. Sci. 2015, 19, 631–643. [Google Scholar] [CrossRef]
- Stoesser, T.; Ruether, N.; Olsen, N.R.B. Calculation of primary and secondary flow and boundary shear stresses in a meandering channel. Adv. Water Resour. 2010, 33, 158–170. [Google Scholar] [CrossRef]
- Flener, C.; Wang, Y.; Laamanen, L.; Kasvi, E.; Vesakoski, J.-M.; Alho, P. Empirical modeling of spatial 3D flow characteristics using a remote-controlled ADCP system: Monitoring a spring flood. Water 2015, 7, 217–247. [Google Scholar] [CrossRef]
- Howard, A. Modelling channel evolution and floodplain morphology. In Floodplain Processes; Anderson, M.G., Walling, D.E., Bates, P.D., Eds.; John Wiley: Hoboken, NJ, USA, 1996; pp. 15–62. [Google Scholar]
- Morris, M.W. CADAM: Concerted Action on DamBreak Modeling; Report SR 571; HR Wallingford Limited: Wallingford, UK, 2000. [Google Scholar]
- Alcrudo, F.; Gil, E. The malpasset dam-break case study. In Proceedings of the 4th Concerted Action on Dambreak Modelling Workshop, Zaragoza, Spain, 18 November 1999; pp. 95–109.
- Valiani, A.; Caleffi, V.; Zanni, A. Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method. J. Hydraul. Eng. 2002, 128, 460–472. [Google Scholar] [CrossRef]
- Hervouet, J. Resolution of the Navier-Stokes Equations. In Hydrodynamics of Free Surface Flows; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 133–176. [Google Scholar]
- Soares-Frazão, S. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res. 2007, 45, 19–26. [Google Scholar] [CrossRef]
- Zech, Y.; Soares-Frazão, S. Dam-break flow experiments and real-case data. A database from the European IMPACT research. J. Hydraul. Res. 2007, 45, 5–7. [Google Scholar] [CrossRef]
- He, Z.; Hu, P.; Zhao, L.; Wu, G.; Pähtz, T. Modeling of breaching due to overtopping flow and waves based on coupled flow and sediment transport. Water 2015, 7, 4283–4304. [Google Scholar] [CrossRef]
- Alcrudo, F.; Mulet, J. Description of the Tous Dam break case study (Spain). J. Hydraul. Res. 2007, 45, 45–57. [Google Scholar] [CrossRef]
- Blanton, J.O. Flood plain inundation caused by dam failure. In Proceedings of the Dam-Break Flood Routing Model Workshop, Bethesda, MD, USA, 18–20 October 1977.
- Shi, Y.; Nguyen, K.D. A projection method-based model for dam- and dyke-break flows using an unstructured finite-volume technique: Applications to the Malpasset dam break (France) and to the flood diversion in the Red River Basin (Vietnam). Int. J. Numer. Methods Fluids 2008, 56, 1505–1512. [Google Scholar] [CrossRef]
- Hervouet, J.-M.; Petitjean, A. Malpasset dam-break revisited with two-dimensional computations. J. Hydraul. Res. 1999, 37, 777–788. [Google Scholar] [CrossRef]
- Biscarini, C.; Di Francesco, S.; Manciola, P. CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sci. 2010, 14, 705–718. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Vrijling, J.K.; Vrouwenvelder, A.C.W.M. Methods for the estimation of loss of life due to floods: A literature review and a proposal for a new method. Nat. Hazards 2008, 46, 353–389. [Google Scholar] [CrossRef]
- Ye, J.; McCorquodale, J.A. Three-dimensional numerical modelling of mass transport in curved channels. Can. J. Civ. Eng. 1997, 24, 471–479. [Google Scholar] [CrossRef]
- Kimura, I.; Uijttewaal, W.; van Balen, W.; Hosoda, T. Application of the nonlinear k-ε model for simulating curved open channel flows. In Proceedings of the Fourth International Conference on Fluvial Hydraulics, Izmir, Turkey, 3–5 September 2008; pp. 99–108.
- Blanckaert, K.; de Vriend, H.J. Nonlinear modeling of mean flow redistribution in curved open channels. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Di Francesco, S.; Falcucci, G.; Biscarini, C.; Manciola, P. LBM method for roughness effect in open channel flows. In Numerical Analysis and Applied Mathematics Icnaam 2012: International Conference of Numerical Analysis and Applied Mathematics, Proceedings of the AIP Conference, Kos, Greece, 19–25 September 2012; AIP Publishing: Melville, NY, USA, 2012; Volume 1479, pp. 1777–1779. [Google Scholar]
- Di Francesco, S.; Zarghami, A.; Biscarini, C.; Manciola, P. Wall roughness effect in the lattice Boltzmann method. In 11th International Conference of Numerical Analysis and Applied Mathematics 2013: Icnaam 2013, Proceedings of the AIP Conference, Rhodes, Greece, 21–27 September 2013; AIP Publishing: Melville, NY, USA, 2013; Volume 1558, pp. 1677–1680. [Google Scholar]
- Manciola, P.; Mazzoni, A.; Savi, F. Formation and propagation of steep waves: An investigative experimental interpretation. In Modelling of Flood Propagation Over Initially Dry Areas; American Society of Civil Engineers: Reston, VA, USA, 1994; pp. 283–297. [Google Scholar]
- De Maio, A.; Savi, F.; Sclafani, L. Three-dimensional mathematical simulation of dambreak flow. In Proceedings of the IASTED Conferences—Environmental Modeling and Simulation, St. Thomas, U.S. Virgin Island, USA, 22–24 November 2004.
- Di Francesco, S.; Biscarini, C.; Manciola, P. Numerical simulation of water free-surface flows through a front-tracking lattice Boltzmann approach. J. Hydroinform. 2015, 17, 1–6. [Google Scholar] [CrossRef]
- Olsen, N.R.B. Computational Fluid Dynamics in Fluvial Sedimentation Engineering. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 1999. [Google Scholar]
- Biscarini, C.; Testa, M. Three-Dimensional numerical modelling of the Marmore waterfalls. Prog. Comput. Fluid Dyn. Int. J. 2011, 11, 105–115. [Google Scholar] [CrossRef]
- Baranya, S.; Olsen, N.R.B.; Józsa, J. Flow analysis of a river confluence with field measurements and rans model with nested grid approach. River Res. Appl. 2015, 31, 28–41. [Google Scholar] [CrossRef]
- Shams, M.; Ahmadi, G.; Smith, D.H. Computational modeling of flow and sediment transport and deposition in meandering rivers. Adv. Water Resour. 2002, 25, 689–699. [Google Scholar] [CrossRef]
- Riley, J.D.; Rhoads, B.L. Flow structure and channel morphology at a natural confluent meander bend. Geomorphology 2012, 163–164, 84–98. [Google Scholar] [CrossRef]
- Blanckaert, K.; Constantinescu, G.; Uijttewaal, W.; Chen, Q. Hydro- and morphodynamics in curved river reaches—Recent results and directions for future research. Adv. Geosci. 2013, 37, 19–25. [Google Scholar] [CrossRef]
- Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K. Large-eddy simulation of a curved open-channel flow over topography. Phys. Fluids 2010, 22, 75108. [Google Scholar] [CrossRef]
- Constantinescu, G.; Koken, M.; Zeng, J. The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation. Water Resour. Res. 2011, 47, W05515. [Google Scholar] [CrossRef]
- Koken, M.; Constantinescu, G.; Blanckaert, K. Hydrodynamic processes, sediment erosion mechanisms, and Reynolds-number-induced scale effects in an open channel bend of strong curvature with flat bathymetry. J. Geophys. Res. Earth Surf. 2013, 118, 2308–2324. [Google Scholar] [CrossRef]
- Van Balen, W.; Blanckaert, K.; Uijttewaal, W.S.J. Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. J. Turbul. 2010, 11, N12. [Google Scholar] [CrossRef]
- Zeng, J.; Constantinescu, G.; Blanckaert, K.; Weber, L. Flow and bathymetry in sharp open-channel bends: Experiments and predictions. Water Resour. Res. 2008, 44, 542–547. [Google Scholar] [CrossRef]
- Blanckaert, K.; De Vriend, H.J. Meander dynamics: A nonlinear model without curvature restrictions for flow in open-channel bends. J. Geophys. Res. Earth Surf. 2010, 115, 79–93. [Google Scholar] [CrossRef]
- Ottevanger, W.; Blanckaert, K.; Uijttewaal, W.S.J. Processes governing the flow redistribution in sharp river bends. Geomorphology 2012, 163–164, 45–55. [Google Scholar] [CrossRef]
- De Vriend, H.J. Velocity redistribution in curved rectangular channels. J. Fluid Mech. 1981, 107, 423–439. [Google Scholar] [CrossRef]
- Engel, F.L.; Rhoads, B.L. Interaction among mean flow, turbulence, bed morphology, bank failures and channel planform in an evolving compound meander loop. Geomorphology 2012, 163–164, 70–83. [Google Scholar] [CrossRef]
- Brice, J.C. Channel Patterns and Terraces of the Loup Rivers in Nebraska; Professional Paper 422-D; U.S. Government Printing Office: Washington, DC, USA, 1964.
- Bellier, J. Le barrage de Malpasset. Travaux 1967, 389, 3–163. [Google Scholar]
- Goutal, N. The malpasset dam failure—An overview and test case definition. In Proceedings of the 4th CADAM Meeting, Zaragoza, Spain, 18–19 November 1999.
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Rusche, H. Computational Fluid Dynamics of Dispersed Two Phase Flows at High Phase Fractions. Ph.D. Thesis, University of London Imperial College, London, UK, 2002. [Google Scholar]
- Facci, A.L.; Panciroli, R.; Ubertini, S.; Porfiri, M. Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J. Fluids Struct. 2015, 55, 484–500. [Google Scholar] [CrossRef]
- Ubbink, O. Numerical Prediction of Two Fluid Systems with Sharp Interfaces. Ph.D. Thesis, Imperial College of Science, London, UK, 1997. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- George, W.K. Lectures in Turbulence for the 21st Century; Chalmers University of Technology: Gothenburg, Sweden, 2009. [Google Scholar]
- Rider, W.J.; Kothe, D.B. Reconstructing Volume Tracking. J. Comput. Phys. 1998, 141, 112–152. [Google Scholar] [CrossRef]
- OpenFOAM Foundation. OpenFOAM User’s Guide; OpenFOAM Foundation: Boston, MA, USA, 2013. [Google Scholar]
- Patankar, S. Numerical Heat Transfer and Fluid Flow; Series on Computational Methods, Mechanics and Thermal Sciences; Taylor & Francis: Abingdon, UK, 1980. [Google Scholar]
- Morgan, G.C.J. Application of the interFoam VoF code to coastal wave/structure interaction. Ph.D. Thesis, University of Bath, Bath, UK, 2013. [Google Scholar]
- Moylesa, M.; Nash, P.; Girotto, I. Performance Analysis of Fluid-Structure Interactions Using OpenFOAM; PRACE Report; Partnership for Advanced Computing in Europe: Brussels, Belgium, 2012. [Google Scholar]
- Biscarini, C.; Di Francesco, S.; Nardi, F.; Manciola, P. Detailed simulation of complex hydraulic problems with macroscopic and mesoscopic mathematical methods. Math. Probl. Eng. 2013, 2013, 1–14. [Google Scholar] [CrossRef]
- Hervouet, J.M. A high resolution 2-D dam-break model using parallelization. Hydrol. Process. 2000, 14, 2211–2230. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Anumolu, L.; Trujillo, M.F. Evaluating the performance of the two-phase flow solver interFoam. Comput. Sci. Discov. 2012, 5, 14016. [Google Scholar] [CrossRef]
- Di Francesco, S.; Biscarini, C.; Pierleoni, A.; Manciola, P. An engineering based approach for hydraulic computations in river flows. In International Conference of Numerical Analysis and Applied Mathematics 2015 (Icnaam 2015), Proceedings of the AIP Conference, Rhodes, Greece, 22–28 September 2015; AIP Publishing: Melville, NY, USA, 2016; Volume 1738, p. 270012. [Google Scholar]
Points | Faces | Internal Faces | Cells | Boundary Patches |
---|---|---|---|---|
2,287,929 | 6,693,676 | 6,524,876 | 2,203,092 | 7 |
ET | X (m) | Y (m) | Δs (m) | ATobs (s) | AT3D (s) | v (m/s) | v3D (m/s) |
---|---|---|---|---|---|---|---|
A | 5500 | 4400 | 0 | 100 | 100 | - | - |
B | 11,900 | 3250 | 6502 | 1240 | 1175 | 5.70 | 6.05 |
C | 13,000 | 2700 | 1230 | 1420 | 1425 | 6.83 | 4.92 |
Points | X (m) | Y (m) | Bank - | WSobs (m) | WS-3D (m) |
---|---|---|---|---|---|
P1 | 4913.1 | 4244.0 | Right | 79.15 | 81.65 |
P2 | 5159.7 | 4369.6 | Left | 87.2 | 87.57 |
P3 | 5790.6 | 4177.7 | Right | 54.9 | 53.91 |
P4 | 5886.5 | 4503.9 | Left | 64.7 | 63.85 |
P5 | 6763.0 | 3429.6 | Right | 51.1 | 47.21 |
P6 | 6929.9 | 3591.8 | Left | 43.75 | 45.08 |
P7 | 7326.0 | 2948.7 | Right | 44.35 | 44.00 |
P8 | 7451 | 3232.1 | Left | 38.6 | 37.8 |
P9 | 8735.9 | 3264.6 | Right | 31.9 | 31.57 |
P10 | 8628.6 | 3604.6 | Left | 40.75 | 37.21 |
P11 | 9761.1 | 3480.3 | Left | 24.15 | 23.3 |
P12 | 9832.9 | 2414.7 | Right | 24.9 | 26 |
P13 | 10,957.2 | 2651.9 | Right | 17.25 | 16.9 |
P14 | 11,115.7 | 3800.7 | Left | 20.7 | 21.2 |
P15 | 11,689 | 2592.3 | Right | 18.6 | 18.67 |
P16 | 11,626 | 3406.8 | Left | 17.25 | 19 |
P17 | 12,333.7 | 2269.7 | Right | 14 | 15 |
Points | X (m) | Y (m) | ATlab (s) | AT3D (s) | WSlab (m) | WS-3D (m) |
---|---|---|---|---|---|---|
G6 | 4947.4 | 4289.7 | 10.2 | 10 | 84.2 | 87.5 |
G7 | 5717.3 | 4407.6 | 102 | 107 | 49.1 | 53.7 |
G8 | 6775.1 | 3869.2 | 182 | 195 | 54 | 52.1 |
G9 | 7128.2 | 3162 | 263 | 245 | 40.2 | 44.2 |
G10 | 8585.3 | 3443.1 | 404 | 400 | 34.9 | 35.29 |
G11 | 9675 | 3085.9 | 600 | 625 | 27.4 | 26.1 |
G12 | 10,939.1 | 3044.8 | 845 | 870 | 21.5 | 21.4 |
G13 | 11,724.4 | 2810.4 | 972 | 990 | 16.1 | 17.4 |
G14 | 12,723.7 | 2485.1 | 1139 | 1125 | 12.9 | 13.4 |
Point | R (m) | B (m) | H (m) | R/B - | B/H - | R/H - |
---|---|---|---|---|---|---|
P2 | 33.1 | 100 | 8 | 0.3 | 12.5 | 4.1 |
P7 | 209.8 | 195 | 12 | 1.1 | 16.3 | 17.5 |
P8 | 621.8 | 100 | 4 | 6.2 | 25.0 | 155.5 |
P9 | 169.9 | 53 | 5 | 3.2 | 10.6 | 34.0 |
P13 | 226.7 | 65 | 4.2 | 3.5 | 15.5 | 54.0 |
P16 | 23,565.4 | 60 | 3 | 392.8 | 20.0 | 7855.1 |
G7 | 255.0 | 27 | 2 | 9.4 | 13.5 | 127.5 |
G8 | 147.4 | 52 | 2.3 | 2.8 | 22.6 | 64.1 |
G9 | 62.7 | 45 | 2.5 | 1.4 | 18.0 | 25.1 |
G10 | 372.2 | 50 | 4 | 7.4 | 12.5 | 93.1 |
G11 | 5126.4 | 62 | 3 | 82.7 | 20.7 | 1708.8 |
G12 | 226.7 | 115 | 2.9 | 2.0 | 39.7 | 78.2 |
G13 | 1869.4 | 96 | 7.8 | 19.5 | 12.3 | 239.7 |
G14 | 21,905.9 | 100 | 4 | 219.1 | 25.0 | 5476.5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the Simulation of Floods in a Narrow Bending Valley: The Malpasset Dam Break Case Study. Water 2016, 8, 545. https://doi.org/10.3390/w8110545
Biscarini C, Di Francesco S, Ridolfi E, Manciola P. On the Simulation of Floods in a Narrow Bending Valley: The Malpasset Dam Break Case Study. Water. 2016; 8(11):545. https://doi.org/10.3390/w8110545
Chicago/Turabian StyleBiscarini, Chiara, Silvia Di Francesco, Elena Ridolfi, and Piergiorgio Manciola. 2016. "On the Simulation of Floods in a Narrow Bending Valley: The Malpasset Dam Break Case Study" Water 8, no. 11: 545. https://doi.org/10.3390/w8110545
APA StyleBiscarini, C., Di Francesco, S., Ridolfi, E., & Manciola, P. (2016). On the Simulation of Floods in a Narrow Bending Valley: The Malpasset Dam Break Case Study. Water, 8(11), 545. https://doi.org/10.3390/w8110545