Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.1.1. Site Characteristics and Management Practices
2.1.2. Irrigation Treatments
2.2. Data Collection and Measurements
2.3. Description of AquaCrop Simulation Model
2.3.1. Model Background
2.3.2. Parameters and Input Data
2.4. Model Calibration and Validation
2.5. Model Evaluation
3. Results
3.1. Calibration
3.1.1. Canopy Cover
3.1.2. Biomass and Yield
3.2. Validation
3.2.1. Canopy Cover
3.2.2. Biomass and Yield
3.2.3. Crop Evapotranspiration and Water Use Efficiency
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Toumi, J.; Er-Raki, S.; Ezzahar, J.; Khabba, S.; Jarlan, L.; Chehbouni, A. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agric. Water Manag. 2016, 163, 219–235. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Liu, M.; Pei, D.; Sun, H. Improved water use efficiency associated with cultivars and agronomic management in the North China plain. Agron. J. 2005, 97, 783–790. [Google Scholar] [CrossRef]
- Farahani, H.J.; Izzi, G.; Oweis, T.Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J. 2009, 101, 469–476. [Google Scholar] [CrossRef]
- Todorovic, M.; Albrizio, R.; Zivotic, L.; Abi Saab, M.-T.; Stöckle, C.; Steduto, P. Assessment of AquaArop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron. J. 2009, 101, 509–521. [Google Scholar] [CrossRef]
- Karunaratne, A.S.; Azam-Ali, S.N.; Izzi, G.; Steduto, P. Calibration and validation of FAO-AquaCrop model for irrigated and water deficient Bambara Groundnut. Exp. Agric. 2011, 47, 509–527. [Google Scholar] [CrossRef]
- Rezaverdinejad, V.; Khorsand, A.; Shahidi, A. Evaluation and comparison of AquaCrop and FAO models for yield prediction of winter wheat under environmental stresses. J. Biodivers. Environ. Sci. 2014, 4, 438–449. [Google Scholar]
- Geerts, S.; Raes, D.; Garcia, M.; Miranda, R.; Cusicanqui, J.A.; Taboada, C.; Mendoza, J.; Huanca, R.; Mamani, A.; Condori, O.; et al. Simulating yield response of quinoa to water availability with AquaCrop. Agron. J. 2009, 101, 499–508. [Google Scholar] [CrossRef]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-The FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop Reference Manual; Version 4; FAO—Land and Water Division: Rome, Italy, 2012. [Google Scholar]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manag. 2013, 130, 14–26. [Google Scholar] [CrossRef]
- García-Vila, M.; Fereres, E.; Mateos, L.; Orgaz, F.; Steduto, P. Deficit irrigation optimization of cotton with AquaCrop. Agron. J. 2009, 101, 477–487. [Google Scholar] [CrossRef]
- De Casa, A.; Ovando, G.; Bressanini, L.; Martínez, J. Aquacrop model calibration in potato and its use to estimate yield variability under field conditions. Atmos. Clim. Sci. 2013, 3, 397–407. [Google Scholar]
- Perng, C.M. Taiwan Grain and Feed Annual Wheat, Corn and Milled Rice Situation and Outlook; USDA Foreign Agriculture Service: Taipei, Taiwan, 2013.
- COA, E.-Y. The Development of High Quality Corn Industry in Taiwan. Available online: http://flora.coa.gov.tw/view_eng.php?id=131 (accessed on 15 May 2015).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Panda, R.K.; Behera, S.K.; Kashyap, P.S. Effective management of irrigation water for maize under stressed conditions. Agric. Water Manag. 2004, 66, 181–203. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Am. Soc. Agric. Biol. Eng. 2013, 56, 273–293. [Google Scholar]
- Igbadun, H.E.; Salim, B.A.; Tarimo, A.K.P.R.; Mahoo, H.F. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrig. Sci. 2008, 27, 11–23. [Google Scholar] [CrossRef]
- Yi, L.; Shenjiao, Y.; Shiqing, L.; Xinping, C.; Fang, C. Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency. Agric. For. Meteorol. 2010, 150, 606–613. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Food and Agriculture Organization: Rome, Italy, 1979. [Google Scholar]
- Salemi, H.; Soom, M.A.M.; Lee, T.S.; Mousavi, S.F.; Ganji, A.; KamilYusoff, M. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. Afr. J. Agric. Res. 2011, 6, 2204–2215. [Google Scholar]
- Nash, J.E.; Sutcliffe, J. V River flow forecasting through conceptual models: I. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Zeleke, K.T.; Luckett, D.; Cowley, R. Calibration and testing of the FAO AquaCrop model for canola. Agron. J. 2011, 103, 1610–1618. [Google Scholar] [CrossRef]
- Evett, S.R.; Tolk, J.A. Introduction: Can water use efficiency be modeled well enough to impact crop management? Agron. J. 2009, 101, 423–425. [Google Scholar] [CrossRef]
- Jin, X.-L.; Feng, H.-K.; Zhu, X.-K.; Li, Z.-H.; Song, S.-N.; Song, X.-Y.; Yang, G.; Xu, X.-G.; Guo, W.-S. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China plain. PLoS ONE 2014, 9, e86938. [Google Scholar] [CrossRef] [PubMed]
- García-Vila, M.; Fereres, E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. Eur. J. Agron. 2012, 36, 21–31. [Google Scholar] [CrossRef]
- Darko, R.O.; Shouqi, Y.; Haofang, Y.; Junping, L.; Abbey, A. Calibration and validation of Aquacrop for full and deficit irrigation of tomato. Int. J. Agric. Biol. Eng. 2016, 9, 104–110. [Google Scholar]
- Bello, Z.A.; Walker, S. Calibration and validation of AquaCrop for pearl millet (Pennisetum glaucum). Crop Pasture Sci. 2016, 67, 948–960. [Google Scholar] [CrossRef]
Soil Depth (m) | Field Capacity (m3·m−3) | Permanent Wilting Point (m3·m−3) | Initial SWC (% Volume) | ||
---|---|---|---|---|---|
Exp. 1 | Exp. 2 | Exp. 3 | |||
0–0.2 | 0.305 | 0.150 | 28.1 | 21.1 | 26.1 |
0.2–0.4 | 0.299 | 0.143 | 31.2 | 22.3 | 25.7 |
0.4–0.6 | 0.304 | 0.151 | 29.6 | 26.6 | 27.1 |
0.6–0.8 | 0.310 | 0.159 | 30.8 | 25.7 | 26.7 |
0.8–1.0 | 0.312 | 0.148 | 31.7 | 28.0 | 29.1 |
Agronomic Details | Growing Season | ||
---|---|---|---|
Exp. 1 | Exp. 2 | Exp. 3 | |
Planting density (plants m−2) | 8.3 | 8.3 | 8.3 |
Sowing date | 22 November | 19 April | 21 November |
Emergence (DAP) | 6 | 7 | 7 |
Anthesis (DAP) | 60 | 54 | 71 |
Maturity (DAP) | 114 | 99 | 120 |
Total Irrigation Water Applied (mm) | |||
FIT | 555 (480, 75) 1 | 300 (240, 60) | 375 (300, 75) |
67% FIT | 395 (320, 75) | 220 (160, 60) | 275 (200, 75) |
50% FIT | 315 (240, 75) | 180 (120, 60) | 225 (150, 75) |
33% FIT | 235 (160, 75) | 140 (80, 60) | 175 (100, 75) |
Parameters | Default | Calibrated |
---|---|---|
Growth & production | - | - |
Normalized crop water productivity (g·m−2) | 33.7 | 33.7 |
Reference harvest index (%) | 48 | 52 |
Phenology | - | - |
Base temperature (°C) | 8 | 8 |
Cut-off temperature (°C) | 30 | 30 |
Time from sowing to anthesis (GDD) | 800 | 882.2 |
Time from sowing to maturity (GDD) | 1700 | 1469 |
Morphology | - | - |
Initial canopy cover (%) | 0.49 | 0.42 |
Canopy cover (CC) per seedling (cm2/plant) | 6.5 | 6.0 |
Maximum canopy cover (%) | 96 | 94 |
Maximum rooting depth (m) | 2.3 | 1 |
Canopy growth coefficient (%/day) | 16.3 | 13.6 |
Canopy decline coefficient (%/day) | 11.7 | 16.2 |
Crop coefficient for transpiration | 1.05 | 1.02 |
Decline of crop coefficient (%/day) | 0.30 | 0.30 |
Effect of CC on reducing evaporation (%) | 50 | 50 |
Upper threshold for leaf expansion growth | 0.14 | 0.14 |
Lower threshold for leaf expansion growth | 0.72 | 0.72 |
Leaf growth stress coefficient curve shape | 2.9 | 2.9 |
Upper threshold for canopy senescence | 0.69 | 0.69 |
Senescence stress coefficient curve shape | 2.7 | 2.7 |
Upper threshold for stomatal closure | 0.69 | 0.69 |
Stomata stress coefficient curve shape | 6 | 6.0 |
Aeration stress coefficient (% vol. saturation) | 5 | 5 |
Statistic | Treatment | |||
---|---|---|---|---|
FIT | 67% FIT | 50% FIT | 33% FIT | |
Variable | Canopy Cover | |||
RMSE (%) | 6.41 | 11.35 | 11.50 | 14.96 |
E | 0.94 | 0.80 | 0.77 | 0.59 |
d | 0.99 | 0.96 | 0.95 | 0.92 |
R2 | 0.98 | 0.97 | 0.95 | 0.92 |
Variable | Biomass | |||
RMSE (t·ha−1) | 1.16 | 1.68 | 2.30 | 3.28 |
E | 0.97 | 0.92 | 0.77 | 0.43 |
d | 0.99 | 0.98 | 0.96 | 0.90 |
R2 | 0.99 | 0.97 | 0.94 | 0.88 |
Treatment | Biomass | Yield | ||||
---|---|---|---|---|---|---|
Measured (t·ha−1) | Simulated (t·ha−1) | Deviation (%) | Measured (t·ha−1) | Simulated (t·ha−1) | Deviation (%) | |
Experiment 1 | ||||||
FIT | 19.8 ± 1.0 1 | 21.3 | 7.7 | 10.4 ± 0.7 | 11.0 | 4.9 |
67% FIT | 16.5 ± 1.7 | 17.8 | 8.2 | 9.0 ± 0.6 | 8.5 | −5.1 |
50% FIT | 14.2 ± 0.6 | 15.5 | 9.3 | 7.3 ± 0.6 | 7.6 | 5.1 |
33% FIT | 12.6 ± 0.7 | 10.7 | −15.4 | 6.3 ± 0.9 | 5.3 | −14.6 |
Experiment 2 | ||||||
FIT | 22.9 ± 1.2 | 23.9 | 4.3 | 12.8 ± 0.7 | 13.2 | 3.0 |
67% FIT | 22.0 ± 0.8 | 21.1 | −4.0 | 11.6 ± 1.3 | 11.2 | −3.4 |
50% FIT | 21.8 ± 1.4 | 20.4 | −6.5 | 11.2 ± 2.5 | 10.8 | −3.4 |
33% FIT | 18.0 ± 0.7 | 20.1 | 11.2 | 9.4 ± 2.4 | 10.3 | 9.6 |
Experiment 3 | ||||||
FIT | 20.6 ± 0.2 | 21.9 | 5.6 | 12.2 ± 0.8 | 12.4 | 2.0 |
67% FIT | 17.6 ± 0.6 | 19.4 | 9.9 | 11.5 ± 0.4 | 10.5 | −8.8 |
50% FIT | 15.3 ± 1.6 | 16.9 | 10.5 | 9.4 ± 0.3 | 8.8 | −6.4 |
33% FIT | 13.8 ± 0.5 | 15.8 | 14.6 | 8.7 ± 1.1 | 8.0 | −8.7 |
Treatment | Seasonal ETc | WUE | ||||
---|---|---|---|---|---|---|
Measured (mm) | Simulated (mm) | Deviation (%) | Measured (mm) | Simulated (mm) | Deviation (%) | |
Experiment 1 | ||||||
FIT | 605 | 545 | −9.92 | 1.75 | 2.01 | 15.06 |
67% FIT | 455 | 412 | −9.45 | 1.95 | 2.07 | 6.00 |
50% FIT | 392 | 354 | −9.69 | 1.85 | 2.16 | 16.41 |
33% FIT | 331 | 270 | −18.43 | 1.87 | 1.99 | 6.76 |
Experiment 2 | ||||||
FIT | 482 | 433 | −10.17 | 2.65 | 3.04 | 14.63 |
67% FIT | 453 | 388 | −12.22 | 2.63 | 2.90 | 10.08 |
50% FIT | 423 | 362 | −14.42 | 2.64 | 2.98 | 12.87 |
33% FIT | 404 | 335 | −17.08 | 2.32 | 3.07 | 32.23 |
Experiment 3 | ||||||
FIT | 570 | 528 | −7.37 | 2.14 | 2.11 | −1.12 |
67% FIT | 464 | 434 | −6.47 | 2.47 | 2.14 | −13.33 |
50% FIT | 423 | 376 | −11.11 | 2.21 | 2.33 | 5.28 |
33% FIT | 352 | 274 | −22.16 | 2.48 | 2.91 | 17.31 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greaves, G.E.; Wang, Y.-M. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water 2016, 8, 557. https://doi.org/10.3390/w8120557
Greaves GE, Wang Y-M. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water. 2016; 8(12):557. https://doi.org/10.3390/w8120557
Chicago/Turabian StyleGreaves, Geneille E., and Yu-Min Wang. 2016. "Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment" Water 8, no. 12: 557. https://doi.org/10.3390/w8120557
APA StyleGreaves, G. E., & Wang, Y. -M. (2016). Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water, 8(12), 557. https://doi.org/10.3390/w8120557