A Rainfall Interception Model for Alfalfa Canopy under Simulated Sprinkler Irrigation
Abstract
:1. Introduction
2. Theoretical Considerations
3. Materials and Methods
3.1. Experimental Site
3.2. Measurement System
3.3. Experimental Procedures
3.4. Leaf Area Index
3.5. Statistical Analyses
4. Results and Discussion
4.1. Dynamic Canopy Interception
4.2. Model Coefficients
4.3. Maximum Interception Estimation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, Q.Z.; Yu, Z.; Ma, C.H.; Xu, C.C. Achievements of the alfalfa industry in last decade and priorities in next decade in China. Pratacultural Sci. 2013, 30, 471–477. [Google Scholar]
- Li, L.; Li, N.; Sheng, J.D.; Wang, H. Effects of nitrogen fertilizer and planting density on alfalfa growth and seed yield. Acta Agrestia Sin. 2012, 20, 54–57. [Google Scholar]
- Ouazaa, S.; Latorre, B.; Burguete, J.; Serreta, A.; Playán, E.; Salvador, R.; Paniagua, P.; Zapata, N. Effect of the start–stop cycle of center-pivot towers on irrigation performance: Experiments and simulations. Agric. Water Manag. 2015, 147, 163–174. [Google Scholar] [CrossRef]
- Urrego-Pereira, Y.; Cavero, J.; Medina, E.; Martínez-Cob, A. Role of transpiration reduction during center-pivot sprinkler irrigation in application efficiency. J. Irrig. Drain. Eng. 2013, 139, 221–232. [Google Scholar] [CrossRef]
- Stambouli, T.; Martinez-Cob, A.; Faci, J.M.; Howell, T.; Zapata, N. Sprinkler evaporation losses in alfalfa during solid-set sprinkler irrigation in semiarid areas. Irrig. Sci. 2013, 31, 1075–1089. [Google Scholar] [CrossRef] [Green Version]
- Urrego-Pereira, Y.F.; Martínez-Cob, A.; Fernández, V.; Cavero, J. Daytime sprinkler irrigation effects on net photosynthesis of maize and alfalfa. Agron. J. 2013, 105, 1515–1528. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, X.P.; Hu, R.; Pan, Y.X.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Muzylo, A.; Llorens, P.; Domingo, F. Rainfall partitioning in a deciduous forest plot in leafed and leafless periods. Ecohydrology 2012, 5, 759–767. [Google Scholar] [CrossRef]
- Gómez, J.A.; Giráldez, J.V.; Fereres, E. Rainfall interception by olive trees in relation to leaf area. Agric. Water Manag. 2001, 49, 65–76. [Google Scholar] [CrossRef]
- David, J.S.; Valente, F.; Gash, J.H.C. Evaporation of intercepted rainfall. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd: Chichester, UK, 2005. [Google Scholar]
- Liu, H.J.; Kang, Y.H.; Wang, Q.G. Effect of crop canopy on soil water redistribution under sprinkler irrigation: A review. Agric. Res. Arid Areas 2007, 25, 137–142. [Google Scholar]
- Liang, X.; Su, D.R.; Yin, S.X.; Wang, Z. Leaf water absorption and desorption functions for three turfgrasses. J. Hydrol. 2009, 376, 243–248. [Google Scholar] [CrossRef]
- McNaughton, K. Net interception losses during sprinkler irrigation. Agric. Meteorol. 1981, 24, 11–27. [Google Scholar] [CrossRef]
- ElMuzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar]
- Kozak, J.A.; Ahuja, L.R.; Green, T.R.; Ma, L. Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture. Hydrol. Process. 2007, 21, 229–241. [Google Scholar] [CrossRef]
- Llorens, P.; Domingo, F. Rainfall partitioning by vegetation under mediterranean conditions. A review of studies in Europe. J. Hydrol. 2007, 335, 37–54. [Google Scholar] [CrossRef]
- Návar, J.; Bryan, R. Interception loss and rainfall redistribution by semi-arid growing shrubs in northeastern Mexico. J. Hydrol. 1990, 115, 51–63. [Google Scholar] [CrossRef]
- Nulsen, R.A.; Bligh, K.J.; Baxter, I.N.; Solin, E.J.; Imrie, D.H. The fate of rainfall in a mallee and heath vegetated catchment in southern western Australia. Austral Ecol. 1986, 11, 361–371. [Google Scholar] [CrossRef]
- Domingo, F.; Puigdefabregas, J.; Moro, M.J.; Bellot, J. Role of vegetation cover in the biogeochemical balances of a small afforested catchment in southeastern Spain. J. Hydrol. 1994, 159, 275–289. [Google Scholar] [CrossRef]
- Jetten, V.G. Interception of tropical rain forest: Performance of a canopy water balance model. Hydrol. Process. 1996, 10, 671–685. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. J. Hydrol. 2001, 247, 230–238. [Google Scholar] [CrossRef]
- Pike, R.; Scherer, R. Overview of the potential effects of forest management on low flows in snowmelt-dominated hydrologic regimes. J. Ecosyst. Manag. 2003, 3, 44–60. [Google Scholar]
- Howell, T.A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef]
- Lamm, F.R.; Manges, H.L. Partitioning of sprinkler irrigation water by a corn canopy. Trans. ASAE 2000, 43, 909–918. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Rao, M. Sprinkler water distributions as affected by corn canopy. Trans. Chin. Soc. Agric. Eng. 2006, 22, 43–47. [Google Scholar]
- Mauch, K.; Delgado, J.; Bausch, W.; Barbarick, K.; McMaster, G. New weighing method to measure shoot water interception. J. Irrig. Drain. Eng. 2008, 134, 349–355. [Google Scholar] [CrossRef]
- van Dijk, A.I.J.M.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. J. Hydrol. 2001, 247, 239–262. [Google Scholar] [CrossRef]
- Kang, Y.H.; Wang, Q.G.; Liu, H.J. Winter wheat canopy interception and its influence factors under sprinkler irrigation. Agric. Water Manag. 2005, 74, 189–199. [Google Scholar] [CrossRef]
- Pypker, T.G.; Bond, B.J.; Link, T.E.; Marks, D.; Unsworth, M.H. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth douglas-fir forest. Agric. For. Meteorol. 2005, 130, 113–129. [Google Scholar] [CrossRef]
- Fan, J.; Oestergaard, K.T.; Guyot, A.; Lockington, D.A. Measuring and modeling rainfall interception losses by a native banksia woodland and an exotic pine plantation in subtropical coastal Australia. J. Hydrol. 2014, 515, 156–165. [Google Scholar] [CrossRef]
- Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of corsican pine. Agric. Meteorol. 1971, 9, 367–384. [Google Scholar] [CrossRef]
- Rutter, A.; Morton, A.; Robins, P. A predictive model of rainfall interception in forests. Ii. Generalization of the model and comparison with observations in some coniferous and hardwood stands. J. Appl. Ecol. 1975, 12, 367–380. [Google Scholar] [CrossRef]
- Horton, R.E. Rainfall interception. Mon. Weather Rev. 1919, 47, 603–623. [Google Scholar] [CrossRef]
- Anzhi, W.; Jinzhong, L.; Jianmei, L.; Tiefan, P.; Changjie, J. A semi-theoretical model of canopy rainfall interception for pinus koraiensis nakai. Ecol. Model. 2005, 184, 355–361. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G.; Ustin, S.L.; Grismer, M.E. A new approach to modeling tree rainfall interception. J. Geophys. Res. Atmos. 2000, 105, 173–188. [Google Scholar] [CrossRef]
- Sayyadi, H.; Nazemi, A.H.; Sadraddini, A.A.; Delirhasannia, R. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler. Biosyst. Eng. 2014, 119, 13–24. [Google Scholar] [CrossRef]
- Price, A.G.; Carlyle-Moses, D.E. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, Southern Ontario, Canada. Agric. For. Meteorol. 2003, 119, 69–85. [Google Scholar] [CrossRef]
- Staelens, J.; De Schrijver, A.; Verheyen, K.; Verhoest, N.E.C. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology. Hydrol. Process. 2008, 22, 33–45. [Google Scholar] [CrossRef]
- Llorens, P.; Poch, R.; Latron, J.; Gallart, F. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale. J. Hydrol. 1997, 199, 331–345. [Google Scholar] [CrossRef]
- Chen, S.; Chen, C.; Cao, T.; Zhao, X.; Hao, H.; Pang, J.; Zhang, S. Effects of rainfall size class and intensity on canopy interception of Pinus tabulaeformis forest in the Qinling mountains, China. J. Basic Sci. Eng. 2015, 23, 41–55. [Google Scholar]
- Holder, C.D. Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology 2013, 6, 483–490. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhang, Y.F.; Hu, R.; Pan, Y.X.; Berndtsson, R. Canopy storage capacity of xerophytic shrubs in northwestern China. J. Hydrol. 2012, 454–455, 152–159. [Google Scholar] [CrossRef]
- Mair, A.; Fares, A. Throughfall characteristics in three non-native hawaiian forest stands. Agric. For. Meteorol. 2010, 150, 1453–1466. [Google Scholar] [CrossRef]
- Calder, I.R. A stochastic model of rainfall interception. J. Hydrol. 1986, 89, 65–71. [Google Scholar] [CrossRef]
- Peng, H.; Zhao, C.; Feng, Z.; Xu, Z.; Wang, C.; Zhao, Y. Canopy interception by a spruce forest in the upper reach of heihe river basin, northwestern China. Hydrol. Process. 2014, 28, 1734–1741. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A. Different views on tree interception process and its determinants. For. Res. Pap. 2014, 75, 291–300. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Price, A.G. An evaluation of the gash interception model in a northern hardwood stand. J. Hydrol. 1999, 214, 103–110. [Google Scholar] [CrossRef]
Experimental Parameters | Sprinkling Intensity (mm/h) | ||||
---|---|---|---|---|---|
2.5 | 5.0 | 10 | 20 | 40 | |
Total spray volume (mm) | 10 | 10 | 10 | 10 | 10 |
Experimental duration (min) | 240 | 120 | 60 | 30 | 15 |
Spray intervals (min) | 15 | 10 | 6 | 5 | 3 |
Spray times | 16 | 12 | 10 | 6 | 5 |
Water volume for one spray (mm) | 0.63 | 0.83 | 1.00 | 1.67 | 2.00 |
Sprinkling Intensity (mm/h) | Vegetative Stage (Days) | Model: I = Im (1 − e−kt) | ||
---|---|---|---|---|
Im | k | Ra2 | ||
2.5 | 5 | 0.292 | 2.793 | 0.997 |
15 | 0.444 | 1.490 | 0.992 | |
30 | 0.616 | 1.600 | 0.999 | |
45 | 0.666 | 1.712 | 0.993 | |
5.0 | 5 | 0.336 | 3.632 | 0.981 |
15 | 0.600 | 2.438 | 0.987 | |
30 | 0.801 | 2.738 | 0.988 | |
45 | 0.787 | 2.934 | 0.999 | |
10.0 | 5 | 0.453 | 6.824 | 0.996 |
15 | 0.624 | 5.498 | 0.992 | |
30 | 0.881 | 5.171 | 0.991 | |
45 | 0.941 | 5.905 | 0.997 | |
20.0 | 5 | 0.506 | 13.306 | 0.977 |
15 | 0.707 | 10.519 | 0.993 | |
30 | 1.041 | 9.317 | 0.993 | |
45 | 1.106 | 10.380 | 0.995 | |
40.0 | 5 | 0.578 | 23.929 | 0.995 |
15 | 0.774 | 21.034 | 0.996 | |
30 | 0.990 | 19.703 | 0.998 | |
45 | 1.256 | 18.455 | 0.998 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Su, D.; Han, L.; Wang, Y. A Rainfall Interception Model for Alfalfa Canopy under Simulated Sprinkler Irrigation. Water 2016, 8, 585. https://doi.org/10.3390/w8120585
Jiao J, Su D, Han L, Wang Y. A Rainfall Interception Model for Alfalfa Canopy under Simulated Sprinkler Irrigation. Water. 2016; 8(12):585. https://doi.org/10.3390/w8120585
Chicago/Turabian StyleJiao, Jian, Derong Su, Liliang Han, and Yadong Wang. 2016. "A Rainfall Interception Model for Alfalfa Canopy under Simulated Sprinkler Irrigation" Water 8, no. 12: 585. https://doi.org/10.3390/w8120585
APA StyleJiao, J., Su, D., Han, L., & Wang, Y. (2016). A Rainfall Interception Model for Alfalfa Canopy under Simulated Sprinkler Irrigation. Water, 8(12), 585. https://doi.org/10.3390/w8120585