Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design and Experimental Area
2.2. Crop Management
2.3. Soil Moisture
2.4. Assessment of Agronomic Parameters
2.4.1. Plant Height, Tiller Numbers and Chlorophyll
2.4.2. Leaf Area
2.4.3. Root Parameters
2.4.4. Heading Rate and Yield Components
2.5. Water Productivity Assessment
2.6. Statistical Analysis
3. Results
3.1. Agro-Hydrological Conditions and Production Environment
3.2. Interaction of Crop Variety under Irrigation Regimes
3.2.1. Rice Growth
3.2.2. Chlorophyll
3.2.3. Roots Parameters
3.2.4. Yield and Yield Components
3.2.5. Water Productivity
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thakur, A.K.; Mohanty, R.K.; Patil, D.U.; Kumar, A. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ. 2014, 12, 413–424. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 2010, 61, 3177–3189. [Google Scholar] [CrossRef] [PubMed]
- Bouman, B. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric. Syst. 2007, 93, 43–60. [Google Scholar] [CrossRef]
- Chapagain, T.; Risema, A.; Yamaji, E. Assessment of system of rice intensification (SRI) and conventional practices under organic and inorganic management in Japan. Rice Sci. 2011, 18, 311–320. [Google Scholar] [CrossRef]
- Thakur, A.K.; Rath, S.; Patil, D.; Kumar, A. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy Water Environ. 2011, 9, 13–24. [Google Scholar] [CrossRef]
- Khepar, S.; Yadav, A.; Sondhi, S.; Siag, M. Water balance model for paddy fields under intermittent irrigation practices. Irrig. Sci. 2000, 19, 199–208. [Google Scholar] [CrossRef]
- Tuong, T.P.; Bouman, B.A.M. Rice Production in Water Scarce Environment; International Rice Research Institue: Manilla, Philippines, 2003. [Google Scholar]
- COA. The Mid-Term Agricultural Program of the Council of Agriculture. Available online: http://eng.coa.gov.tw/theme_data.php?theme=eng_policies&id=9 (accessed on 16 December 2016).
- Chang, Y.C.; Kan, C.E.; Chen, C.T.; Kuo, S.F. Enhancement of water storage capacity in wetland rice fields through deepwater management practice. Irrig. Drain. 2007, 56, 79–86. [Google Scholar] [CrossRef]
- USDA. Taiwan Grain and Feed Annual Wheat, Corn, Rice—Production, Supply & Demand. Available online: http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Taipei_Taiwan_4-1-2014.pdf (accessed on 16 December 2016).
- Pascual, V.J.; Wang, Y.-M. Utilizing rainfall and alternate wetting and drying irrigation for high water productivity in irrigated lowland paddy rice in southern Taiwan. Plant Prod. Sci. 2016, 19, 1–12. [Google Scholar] [CrossRef]
- Kima, A.S.; Chung, W.G.; Wang, Y.-M.; Traoré, S. Evaluating water depths for high water productivity in irrigated lowland rice field by employing alternate wetting and drying technique under tropical climate conditions, southern taiwan. Paddy Water Environ. 2014, 13, 379–389. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Stoop, W.A.; Uphoff, N.; Kassam, A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: Opportunities for improving farming systems for resource-poor farmers. Agric. Syst. 2002, 71, 249–274. [Google Scholar] [CrossRef]
- Uphoff, N. The system of rice intensification: Using alternative cultural practices to increase rice production and profitability from existing yield potentials. Preface Préface Prefacio 2006, 55, 103–113. [Google Scholar]
- Uphoff, N. Supporting food security in the 21st century through resource-conserving increases in agricultural production. Agric. Food Secur. 2012, 1, 1–12. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Uphoff, N.T.; Yamaji, E. A conceptual framework for eco-friendly paddy farming in Taiwan, based on experimentation with system of rice intensification (SRI) methodology. Paddy Water Environ. 2016, 14, 169–183. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, T.C.; Hsieh, J.C. Feasibility of system of rice intensification in Taiwan. Taiwan Water Conserv. 2013, 61, 1–11. [Google Scholar]
- Stoop, W.A. The scientific case for system of rice intensification and its relevance for sustainable crop intensification. Int. J. Agric. Sustain. 2011, 9, 443–455. [Google Scholar] [CrossRef]
- Thakur, A.; Uphoff, N.; Antony, E. An assessment of physiological effects of system of rice intensification (SRI) practices compared with recommended rice cultivation practices in India. Exp. Agric. 2010, 46, 77–98. [Google Scholar] [CrossRef]
- Uphoff, N. Higher yields with fewer external inputs? The system of rice intensification and potential contributions to agricultural sustainability. Int. J. Agric. Sustain. 2003, 1, 38–50. [Google Scholar] [CrossRef]
- Uphoff, N.; Kassam, A. Case Study: System of Rice Intensification. Available online: http://www.europarl.europa.eu/RegData/etudes/etudes/stoa/2009/424734/DG-IPOL-STOA_ET%282009%29424734_EN%28PAR05%29.pdf (accessed on 16 December 2016).
- Glover, D. The system of rice intensification: Time for an empirical turn. NJAS-Wagening. J. Life Sci. 2011, 57, 217–224. [Google Scholar] [CrossRef]
- Uphoff, N. Agroecological alternatives: Capitalising on existing genetic potentials. J. Dev. Stud. 2007, 43, 218–236. [Google Scholar] [CrossRef]
- Mishra, A.; Whitten, M.; Ketelaar, J.W.; Salokhe, V. The system of rice intensification (SRI): A challenge for science, and an opportunity for farmer empowerment towards sustainable agriculture. Int. J. Agric. Sustain. 2006, 4, 193–212. [Google Scholar]
- Nyamai, M.; Mati, B.; Home, P.; Odongo, B.; Wanjogu, R.; Thuranira, E. Improving land and water productivity in basin rice cultivation in Kenya through system of rice intensification (SRI). Agric. Eng. Int. CIGR J. 2012, 14, 1–9. [Google Scholar]
- Satyanarayana, A.; Thiyagarajan, T.; Uphoff, N. Opportunities for water saving with higher yield from the system of rice intensification. Irrig. Sci. 2007, 25, 99–115. [Google Scholar] [CrossRef]
- Dobermann, A. A critical assessment of the system of rice intensification (SRI). Agric. Syst. 2004, 79, 261–281. [Google Scholar] [CrossRef]
- Sheehy, J.E.; Peng, S.; Dobermann, A.; Mitchell, P.; Ferrer, A.; Yang, J.; Zou, Y.; Zhong, X.; Huang, J. Fantastic yields in the system of rice intensification: Fact or fallacy? Field Crops Res. 2004, 88, 1–8. [Google Scholar] [CrossRef]
- Moser, C.M.; Barrett, C.B. The disappointing adoption dynamics of a yield-increasing, low external-input technology: The case of SRI in madagascar. Agric. Syst. 2003, 76, 1085–1100. [Google Scholar] [CrossRef]
- Rakotomalala, H.W. Comparison entre la rizicullture traditionnelle et le systeme de riziculture intensive dans la region de ranomafana. Sci. Agron. 1997, 3, 3. [Google Scholar]
- Barrett, C.B.; Moser, C.M.; McHugh, O.V.; Barison, J. Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. Am. J. Agric. Econ. 2004, 86, 869–888. [Google Scholar] [CrossRef]
- Stoop, W.A.; Adam, A.; Kassam, A. Comparing rice production systems: A challenge for agronomic research and for the dissemination of knowledge-intensive farming practices. Agric. Water Manag. 2009, 96, 1491–1501. [Google Scholar] [CrossRef]
- Brouwer, C.; Goffeau, A.; Heibloem, M. Irrigation Water Management: Training Manual No. 1-Introduction to Irrigation; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evaporation–Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Kima, A.S.; Chung, W.G.; Wang, Y.-M. Improving irrigated lowland rice water use efficiency under saturated soil culture for adoption in tropical climate conditions. Water 2014, 6, 2830–2846. [Google Scholar] [CrossRef]
- Chapman, S.C.; Barreto, H.J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron. J. 1997, 89, 557–562. [Google Scholar] [CrossRef]
- Tadesse, T.; Dechassa, N.; Bayu, W.; Gebeyehu, S. Impact of rainwater management on growth and yield of rainfed lowland rice. Wudpecker J. Agric. Res. 2013, 2, 108–114. [Google Scholar]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Banos, Philippines, 1981. [Google Scholar]
- Ndiiri, J.; Mati, B.; Home, P.; Odongo, B.; Uphoff, N. Comparison of water savings of paddy rice under system of rice intensification (SRI) growing rice in Mwea, Kenya. Int. J. Curr. Res. Rev. 2012, 4, 63–73. [Google Scholar]
- Bouman, B.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Mishra, A.; Salokhe, V. Flooding stress: The effects of planting pattern and water regime on root morphology, physiology and grain yield of rice. J. Agron. Crop Sci. 2010, 196, 368–378. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Wang, Z.; Yang, J.; Zhang, J. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J. Exp. Bot. 2010, 61, 3719–3733. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Singh, K.; Sharma, S. Influence of crop nutrition on grain yield, seed quality and water productivity under two systems of rice cultivation. Rice Sci. 2013, 20, 1–10. [Google Scholar] [CrossRef]
- Dong, N.M.; Brandt, K.K.; Sorensen, H.J.; Ung, N.N.; Hach, C.V.; Tan, P.S.; Dalsgaard, T. Effects of alternate and drying verses contiuously flooding on fertilizer nitrogen fate in rice field in the mekong delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, D.; Lin, X. Effects of water management and organic fertilization with SRI crop practices on hybrid rice performance and rhizosphere dynamics. Paddy Water Environ. 2011, 9, 33–39. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res. 2009, 113, 31–40. [Google Scholar] [CrossRef]
- Del Pozo, J.C.; Lopez-Matas, M.; Ramirez-Parra, E.; Gutierrez, C. Hormonal control of the plant cell cycle. Physiol. Plant. 2005, 123, 173–183. [Google Scholar] [CrossRef]
- Ookawa, T.; Naruoka, Y.; Sayama, A.; Hirasawa, T. Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Sci. 2004, 44, 2107–2115. [Google Scholar] [CrossRef]
- Ascha, F.; Dingkuhn, M.; Sow, A.; Audebert, A. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crops Res. 2005, 93, 223–236. [Google Scholar] [CrossRef]
- Rahman, S.M.; Kakuda, K.-I.; Sasaki, Y.; Ando, H. Effect of Mid-Drainage on Root Physiological Activities, N Uptake and Yield of Rice in North East Japan. Available online: http://www2.lib.yamagata-u.ac.jp/kiyou/kiyoua/kiyoua-16-4/image/kiyoua-16-4-197to206.pdf (accessed on 16 December 2016).
- Nguyen, H.; Fischer, K.; Fukai, S. Physiological responses to various water saving systems in rice. Field Crops Res. 2009, 112, 189–198. [Google Scholar] [CrossRef]
- Ockerby, S.; Fukai, S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res. 2001, 69, 215–226. [Google Scholar] [CrossRef]
- Belder, P.; Bouman, B.; Cabangon, R.; Guoan, L.; Quilang, E.; Yuanhua, L.; Spiertz, J.; Tuong, T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Virk, P.; Balasubramanian, V.; Virmani, S.; Lopena, V.; Cabangon, R.; Nanda, G. Enhancing Water and Land Productivity in Irrigated Rice in Two Asian River Basins. In Poster Presented at the Baseline Conference for the CGIAR Challenge Program on Water and Food, Nairobi, Kenya, 2–6 November 2003.
- San-oh, Y.; Sugiyama, T.; Yoshita, D.; Ookawa, T.; Hirasawa, T. The effect of planting pattern on the rate of photosynthesis and related processes during ripening in rice plants. Field Crops Res. 2006, 96, 113–124. [Google Scholar] [CrossRef]
- Jones, H. What is Water Use Efficiency; Bacon, M.A., Ed.; Oxford Press: Oxford, UK, 2004. [Google Scholar]
- Hameed, K.A.; Jaber, F.; Mosa, A.J. Irrigation water-use efficiency for rice production in southern Iraq under SRI management. Taiwan Water Conserv. 2013, 61, 86–93. [Google Scholar]
- Senthilkumar, K.; Bindraban, P.; Thiyagarajan, T.; De Ridder, N.; Giller, K. Modified rice cultivation in tamil nadu, india: Yield gains and farmers’ (lack of) acceptance. Agric. Syst. 2008, 98, 82–94. [Google Scholar] [CrossRef]
- Ceesay, M.; Reid, W.S.; Fernandes, E.C.; Uphoff, N.T. The effects of repeated soil wetting and drying on lowland rice yield with system of rice intensification (SRI) methods. Int. J. Agric. Sustain. 2006, 4, 5–14. [Google Scholar]
Months | Temperature (°C) | Rainfall (mm) | Solar Rad (h) | |
---|---|---|---|---|
Mean Maximum | Mean Minimum | Total Monthly | ||
January | 23.5 | 14.8 | 141 | 125.7 |
February | 24.2 | 14.1 | 4.50 | 158.3 |
March | 26.0 | 16.3 | 58.5 | 160.4 |
April | 31.4 | 21.3 | 271 | 216.6 |
May | 33.0 | 23.3 | 97 | 218.2 |
June | 31.2 | 21.7 | 0 | 55.6 |
Panicle Initiation | Heading | Heading | |||
---|---|---|---|---|---|
Treatments | Plant Height (cm) | Tiller Numbers (Hill) | Plant Height (cm) | Tillers Number (Hill) | Leaf Area Index |
TN113 | 78.15 ab | 14.40 ab | 107.27 a | 18.45 ab | 2.55 a |
TN117 | 65.10 d | 15.35 a | 96.70 b | 20.75 a | 2.41 ab |
TN11F | 69.70 cd | 11.10 b | 94.40 b | 16.02 b | 2.16 c |
TD303 | 78.75 a | 13.55 ab | 110.55 a | 19.20 ab | 2.69 a |
TD307 | 66.05 d | 13.20 ab | 98.22 b | 20.05 a | 2.38 ab |
TD30F | 72.15 bc | 12.65 ab | 96.30 b | 17.21 ab | 2.23 bc |
p | ** | ** | ** | ** | ** |
Treatments | Length (cm) | Volume (cm3) | Root Dry Biomass (g/Hill) |
---|---|---|---|
TN113 | 23.25 ab | 52.50 ab | 23.03 |
TN117 | 20.71 b | 42.01 ab | 22.71 |
TN11F | 18.14 b | 38.37 b | 18.31 |
TD303 | 24.31 a | 56.51 a | 24.31 |
TD307 | 22.16 b | 47.01 ab | 23.51 |
TD30F | 19.63 b | 40.83 b | 20.65 |
p | ** | ** | ns |
Treatments | Average Panicle Number per Hill | Average Panicle Length (cm) | Average Panicle Weight (g) | Grain Number per Panicle | 1000 Grain Weight (g) | Grain Filling Rate (%) | Grain Yield (ton/ha) |
---|---|---|---|---|---|---|---|
TN113 | 16.72 | 20.78 | 1.96 c | 120.25 b | 22.04 cb | 81.14 b | 8.04 bc |
TN117 | 15.87 | 20.65 | 1.81 c | 117.55 b | 21.08 c | 70.48 c | 7.46 c |
TN11F | 14.29 | 21.87 | 3.37 a | 130.90 ab | 26.67 a | 84.71 a | 9.72 ab |
TD303 | 18.42 | 20.53 | 2.46 b | 121.13 ab | 24.29 b | 82.89 ab | 10.26 a |
TD307 | 18.30 | 21.25 | 2.30 b | 116.88 b | 23.29 b | 77.20 bc | 9.83 ab |
TD30F | 14.55 | 21.67 | 3.59 a | 138.25 a | 26.61 a | 86.42 a | 10.46 a |
p | ns | ns | ** | ** | ** | ** | ** |
Treatments | Irrigation Water (m3/ha) | Rain Water (m3/ha) | Irrigation Water Productivity (kg/m3) | Total Water Productivity (kg/m3) |
---|---|---|---|---|
TN113 | 26,400 | 5720 | 0.30 | 0.25 |
TN117 | 15,600 | 5720 | 0.48 | 0.35 |
TN11F | 59,300 | 5720 | 0.16 | 0.15 |
TD303 | 26,400 | 5720 | 0.39 | 0.32 |
TD307 | 15,600 | 5720 | 0.63 | 0.46 |
TD30F | 59,300 | 5720 | 0.18 | 0.16 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascual, V.J.; Wang, Y.-M. Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan. Water 2017, 9, 3. https://doi.org/10.3390/w9010003
Pascual VJ, Wang Y-M. Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan. Water. 2017; 9(1):3. https://doi.org/10.3390/w9010003
Chicago/Turabian StylePascual, Victoriano Joseph, and Yu-Min Wang. 2017. "Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan" Water 9, no. 1: 3. https://doi.org/10.3390/w9010003
APA StylePascual, V. J., & Wang, Y. -M. (2017). Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan. Water, 9(1), 3. https://doi.org/10.3390/w9010003