The Development of Sustainable Saltwater-Based Food Production Systems: A Review of Established and Novel Concepts
Abstract
:1. Introduction
2. Potential Negative Aquacultural Impacts
2.1. Effluent Discharge and Contaminants
2.2. Water Consumption
2.3. Farmed Fish Escapes
2.4. Parasite and Disease Transmission
2.5. Fishmeal and Oil
2.6. Social Welfare
3. Recirculating Aquaculture Systems (On-Land)
4. Integrated Multi-Trophic Aquaculture (Offshore and On-Land)
4.1. Halophyte Wetlands (On-Land)
4.2. Saltwater Aquaponics (On-Land)
4.2.1. Hydroponics
Deep Flow Technique
Nutrient Film Technique
Aeroponics
4.2.2. Aquaponics
4.2.3. Saltwater Aquaponics
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United States Census Bureau. U.S. and World Population Clock. Available online: http://www.census.gov/popclock/ (accessed on 11 August 2016).
- Klinger, D.; Naylor, R. Searching for solutions in aquaculture: Charting a sustainable course. Annu. Rev. Environ. Resour. 2012, 37, 247–276. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2016: Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016; p. 200. [Google Scholar]
- Granada, L.; Sousa, N.; Lopes, S.; Lemos, M.F.L. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?—A review. Rev. Aquac. 2016, 8, 283–300. [Google Scholar] [CrossRef]
- Lund, E.K. Health benefits of seafood; is it just the fatty acids? Food Chem. 2013, 140, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.; Ehrlich, P.R.; et al. Does Aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef] [PubMed]
- Diana, J.S. Aquaculture production and biodiversity conservation. BioScience 2009, 59, 27–38. [Google Scholar] [CrossRef]
- Naylor, R.; Burke, M. Aquaculture and ocean resources: Raising tigers of the sea. Annu. Rev. Environ. Resour. 2005, 30, 185–218. [Google Scholar] [CrossRef]
- Eagle, J.; Naylor, R.; Smith, W. Why farm salmon outcompete fishery salmon. Mar. Policy 2004, 28, 259–270. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. The State of World Fisheries and Aquaculture 2010; FAO: Rome, Italy, 2010; p. 197. [Google Scholar]
- Bell, J.D.; Bartley, D.M.; Lorenzen, K.; Loneragan, N.R. Restocking and stock enhancement of coastal fisheries: Potential, problems and progress. Fish. Res. 2006, 80, 1–8. [Google Scholar] [CrossRef]
- Gifford, S.; Dunstan, R.H.; O’Connor, W.; Koller, C.E.; MacFarlane, G.R. Aquatic zooremediation: Deploying animals to remediate contaminated aquatic environments. Trends Biotechnol. 2007, 25, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Bunting, S.W. Wastewater aquaculture: Perpetuating vulnerability or opportunity to enhance poor livelihoods? Aquat. Resour. Cult. Dev. 2004, 1, 51–57. [Google Scholar]
- Kawarazuka, N.; Béné, C. Linking small-scale fisheries and aquaculture to household nutritional security: An overview. Food Secur. 2010, 2, 343–357. [Google Scholar] [CrossRef]
- Subasinghe, R.; Soto, D.; Jia, J. Global aquaculture and its role in sustainable development. Rev. Aquac. 2009, 1, 2–9. [Google Scholar] [CrossRef]
- Smith, M.D.; Roheim, C.A.; Crowder, L.B.; Halpern, B.S.; Turnipseed, M.; Anderson, J.L.; Asche, F.; Bourillón, L.; Guttormsen, A.G.; Khan, A.; et al. Sustainability and global seafood. Science 2010, 327, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.W.; Cole, R.; Gaydos, S.J.; Gray, J.; Hyland, G.; Jacques, M.L.; Powell-Dunford, N.; Sawhney, C.; Au, W.W. Aquaculture: Environmental, toxicological, and health issues. Int. J. Hyg. Environ. Health 2009, 212, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Hardy, R.W.; Bureau, P.D.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [PubMed]
- Read, P.; Fernandes, T. Management of environmental impacts of marine aquaculture in Europe. Aquaculture 2003, 226, 139–163. [Google Scholar] [CrossRef]
- Naylor, R.; Eagle, J.; Smith, W. Salmon aquaculture in the Pacific North-west: A global industry with local impacts. Environment 2003, 45, 18–39. [Google Scholar] [CrossRef]
- Grigorakis, K.; Rigos, G. Aquaculture effects on the environmental and public welfare—The case of Mediterranean Mariculture. Chemosphere 2011, 855, 899–919. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, H.; Hu, H.; Liu, Y.; Mao, Y.; Zhou, H. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 2006, 252, 264–276. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Azevedo, C.A.A.; Trigueiro, T.G.; Pereira, D.C.; Carneiro, M.A.A.; Camara, M.R. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 2011, 65, 253–257. [Google Scholar] [CrossRef]
- Burridge, L.; Weis, J.S.; Cabello, F.; Pizarro, J.; Bostick, K. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture 2010, 306, 7–23. [Google Scholar] [CrossRef]
- Brand, L.E.; Sunda, W.G.; Guillard, R.R.L. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Biol. Ecol. 1986, 96, 225–250. [Google Scholar] [CrossRef]
- Le Jeune, A.H.; Charpin, M.; Deluchat, V.; Briand, J.F.; Lenain, J.F.; Baudu, M.; Amblard, C. Effect of copper sulphate treatment on natural phytoplanktonic communities. Aquat. Toxicol. 2006, 80, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Winner, R.W.; Owen, H.A. Seasonal variability in the sensitivity of freshwater phytoplankton communities to a chronic copper stress. Aquat. Toxicol. 1991, 19, 73–88. [Google Scholar] [CrossRef]
- Russell, M.; Robinson, C.D.; Walsham, P.; Webster, L.; Moffat, C.F. Persistent organic pollutants and trace metals in sediments close to Scottish marine fish farms. Aquaculture 2011, 319, 262–271. [Google Scholar] [CrossRef]
- Hites, R.A.; Foran, J.A.; Carpenter, D.O.; Hamilton, M.C.; Knuth, B.A.; Schwager, S.J. Global assessment of organic contaminants in farmed salmon. Science 2004, 303, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Hites, R.A.; Foran, J.A.; Schwager, S.J.; Knuth, B.A.; Hamilton, M.C.; Carpenter, D.O. Global assessment of polybrominated diphenyl ethers in farmed and wild salmon. Environ. Sci. Technol. 2004, 38, 4945–4949. [Google Scholar] [CrossRef] [PubMed]
- Montory, M.; Barra, R. Preliminary data on poly-brominated dephenyl ethers (PBDE) in farmed fish tissues (Salmo salar) and fish feed in Southern Chile. Chemosphere 2006, 63, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Hayward, D.; Wong, J.; Krynitsky, A.J. Polybrominated diphenyl ethers and polychlorinated biphenyls in commercially wild caught and farm-raised fish fillets in the United States. Environ. Res. 2007, 103, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Minh, N.H.; Minh, T.B.; Kajiwara, N.; Kunisue, T.; Iwata, H.; Viet, P.H.; Tu, N.P.; Tuyen, B.C.; Tanabe, S. Contamination by polybrominated diphenyl ethers and persistent organochlorides in catfish and feed from Mekong River Delta, Vietnam. Environ. Toxicol. Chem. 2006, 25, 2700–2708. [Google Scholar] [CrossRef] [PubMed]
- Blanco, S.L.; Sobrado, C.; Quintela, C.; Cabaleiro, S.; Gonzalez, J.C.; Vietites, J.M. Dietary uptake of dioxin (PCDD/PCDFs) and dioxin-like PCBs in Spanish aquacultured turbot (Psetta maxima). Food Addit. Contam. 2007, 24, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Carubelli, G.; Fanelli, R.; Mariani, G.; Nichetti, S.; Crosa, G.; Calamari, D.; Fattore, E. PCB contamination in farmed and wild sea bass (Dicentrarchus labrax L.) from a coastal wetland area in central Italy. Chemosphere 2007, 68, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Pinto, B.; Garritano, S.L.; Cristofani, R.; Ortaggi, G.; Giuliano, A.; Amodio-Cocchierri, R.; Cirillo, R.; DeGiusti, M.; Boccia, A.; Reali, D. Monitoring of polychlorinated biphenyl contamination and estrogenic activity in water, commercial feed, and farmed seafood. Environ. Monit. Assess. 2008, 144, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, E.; Ayotte, P.; Lucas, M.; Blanchet, C. Risk and benefits from consuming salmon and trout: A Canadian perspective. Food Chem. Toxicol. 2007, 45, 1345–1349. [Google Scholar]
- Foran, J.A.; Carpenter, D.O.; Hamilton, M.C.; Knuth, B.A.; Schwager, S.J. Risk-based consumption advice for farmed Atlantic and wild pacific salmon contaminated with dioxins and dioxin-like compounds. Environ. Health Perspect. 2005, 113, 552–555. [Google Scholar] [PubMed]
- Hastein, T.; Hjeltnes, B.; Lillehaugh, A.; Utne Skare, J.; Berntssen, M.; Lundebye, A.K. Food safety hazards that occur during the production stage: Challenges for fish farming and the fishing industry. Rev. Sci. Technol. 2006, 25, 607–625. [Google Scholar]
- Easton, M.D.L.; Luszniak, D.; Von der Geest, E. Preliminary examination of contaminant loadings in farm salmon, wild salmon, and commercial salmon feed. Chemosphere 2002, 46, 1053–1074. [Google Scholar] [CrossRef]
- Davidson, P.; Myers, G.J.; Weiss, B.; Shamlaye, C.F.; Cox, C. Commentary: Prenatal methyl mercury exposure from fish consumption and child development: A review of evidence and perspectives from the Seychelles child development study. Neuro Toxicol. 2006, 27, 1106–1109. [Google Scholar]
- Axelad, D.A.; Bellinger, D.C.; Ryan, L.M.; Woodruff, T.J. Dose-response relationship of prenatal mercury exposure and IQ: An integrative analysis of epidemiologic data. Environ. Health Perspect. 2007, 115, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oterhals, A.; Nygard, E. Reduction of persistent organic pollutants in fishmeal: A feasibility study. J. Agric. Food Chem. 2008, 56, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, G.; Dellatte, E.; Fochi, I.; Iacovella, N.; Miiero, R.; diDomenico, A. Depletion of selected polychlorinated biphenyl, dibenzodioxin, and debenzofuran congeners in farmed rainbow trout (Oncorhynchus mykiss): A hint for safer fish farming. Chemosphere 2007, 20, 34–43. [Google Scholar]
- Kiljunen, M.; Vanhatalo, M.; Mantyniemi, S.; Peltonen, H.; Kuikka, S.; Kiviranta, H.; Parmanne, R.; Tuomisto, J.T.; Vuorinen, P.J.; Hallikainen, A.; et al. Human dietary intake of organochlorines from Baltic herring: Implications of individual fish variability and fisheries management. Ambio 2007, 36, 257–264. [Google Scholar] [CrossRef]
- Bridger, C.J.; Garber, A. Aquaculture escapement, implications, and mitigation: The salmonid case study. In Ecological Aquaculture: The Evolution of the Blue Revolution; Costa-Pierce, B.A., Ed.; Blackwell Science: Malden, MA, USA, 2002; pp. 77–102. [Google Scholar]
- Brown, N. Flatfish farming systems in the Atlantic region. Rev. Fish. Sci. 2002, 10, 403–419. [Google Scholar] [CrossRef]
- Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 1999, 176, 227–235. [Google Scholar] [CrossRef]
- Páez-Osuna, F. The environmental impact of shrimp aquaculture: A global perspective. Environ. Pollut. 2001, 112, 229–231. [Google Scholar] [CrossRef]
- Páez-Osuna, F.; Guerrero-Galván, S.R.; Ruiz-Fernández, A.C. The environmental impact of shrimp aquaculture and the coastal pollution in Mexico. Mar. Pollut. Bull. 1998, 36, 65–75. [Google Scholar] [CrossRef]
- Boyd, C.E.; Gross, A. Water use and conservation for inland aquaculture ponds. Fish. Manag. Ecol. 2000, 7, 55–63. [Google Scholar] [CrossRef]
- Arthur, R.I.; Lorenzen, K.; Homekingkeo, P.; Sidavong, K.; Sengvilaikham, B.; Garaway, C.J. Assessing impacts of introduced aquaculture species on native fish communities: Nile tilapia and major carps in SE Asian freshwaters. Aquaculture 2010, 299, 81–88. [Google Scholar] [CrossRef]
- Fleming, I.A.; Hindar, K.; Mjolnerod, I.; Jonsson, B.; Balstad, T.; Lamberg, A. Lifetime success and interactions of farm salmon invading a natural population. Proc. R. Soc. Lond. Ser. B 2000, 267, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- McGinnity, P.; Prodohl, P.; Ferguson, A.; Hynes, R.; Maoileidigh, N.O.; Baker, N.; Cotter, D.; O’Hea, B.; Cooke, D.; Rogan, G.; et al. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salo salar, as a result of interactions with escaped farmed salmon. Proc. R. Soc. Lond. Ser. B 2003, 270, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- McGinnity, P.; Stone, C.; Taggart, J.; Cooke, D.; Cotter, D.; Hynes, R.; McCamley, C.; Cross, T.; Ferguson, A. Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: Use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J. Mar. Sci. 1997, 54, 998–1008. [Google Scholar] [CrossRef]
- Volpe, J.; Taylor, E.; Rimmer, D.; Glickman, B. Evidence of natural reproduction of aquaculture-escaped Atlantic salmon in a coastal British Columbia river. Conserv. Biol. 2000, 14, 899–903. [Google Scholar] [CrossRef]
- Kolmes, S.A. Salmon farms and hatcheries. Environment 2004, 46, 40–43. [Google Scholar]
- Levin, P.S.; Zabel, R.W.; Williams, J.G. The road to extinction is paved with good intentions: Negative association of fish hatcheries with threatened salmon. Proc. R. Soc. Lond. Ser. B 2001, 268, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.; Hindar, K.; Fleming, I.A.; Goldburg, R.; Williams, S.; Volpe, J.; Whoriskey, F.; Eagle, L.; Kelso, D.; Mangel, M. Fugitive salmon: Assessing the risks of escaped fish from net-pen aquaculture. BioScience 2005, 55, 427–437. [Google Scholar] [CrossRef]
- Hansen, P.; Jacobsen, J.A.; Und, R.A. High numbers of farmed Atlantic salmon, Salmo salar, observed in oceanic waters north of the Faroe Islands. Aquac. Fish. Manag. 1993, 24, 777–781. [Google Scholar] [CrossRef]
- McKinnell, S.; Thomson, A.J. Recent events concerning Atlantic salmon escapees in the Pacific. ICES J. Mar. Sci. 1997, 54, 1221–1225. [Google Scholar] [CrossRef]
- Gross, M.R. One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture. Can. J. Fish. Aquat. Sci. 1998, 55, 1–14. [Google Scholar] [CrossRef]
- Slaney, T.L.; Hyatt, K.D.; Northcote, T.G.; Fielden, R.J. Status of anadromous salmon and trout in British Columbia and Yukon fisheries. Am. Fish. Soc. 1996, 21, 20–35. [Google Scholar]
- Krkosek, M.; Lewis, M.A.; Volpe, J.P.; Morton, A. Fish farms and sea lice infestations of wild juvenile salmon in the Broughton Archipelago—A rebuttal to Brooks (2005). Fish. Sci. 2006, 14, 1–11. [Google Scholar] [CrossRef]
- Krkosek, M.; Ford, J.S.; Morton, A.; Lele, S.; Myers, R.A.; Lewis, M. Declining wild salmon populations in realtion to parasites from farm salmon. Science 2007, 318, 1772–1775. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.S.; Myers, R.A. A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biol. 2008, 6. [Google Scholar] [CrossRef] [PubMed]
- McVicar, A.H. Disease and parasite implications of the coexistence of wild and culture salmon populations. ICES J. Mar. Sci. 1997, 54, 1093–1103. [Google Scholar] [CrossRef]
- Dalton, R. Fishing for trouble. Nature 2004, 431, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Tacon, A.G.J. Selected developments and trends: Aquafeeds and feeding strategies. In Review of the State of World Aquaculture; Shehadeh, Z., Ed.; UN Food Agriculture Organization: Rome, Italy, 1997; Available online: http://www.fao.org/docrep/003/W7499E/w7499e16.htm (accessed on 26 August 2016).
- Food and Agriculture Organisation of the United Nations. The State of World Fisheries and Aquaculture 2014; FAO: Rome, Italy, 2014; p. 243. [Google Scholar]
- Tacon, A.G.J.; Hasan, M.R.; Subasinghe, R.P. Use of Fishery Resources as Feed Inputs for Aquaculture Development: Trends and Policy Implications; FAO Fisheries Circular No. 1018; Food Agriculture Organization: Rome, Italy, 2006; p. 99. [Google Scholar]
- Tacon, A.G.J.; Hasan, M.R.; Metian, M. Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans; FAO Fisheries and Aquaculture Technical Paper No. 564; Food Agriculture Organization: Rome, Italy, 2011; p. 87. [Google Scholar]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Boissy, J.; Aubin, J.; Abdeljalil, D.; van der Werf, H.M.G.; Bell, G.J.; Kaushik, S.J. Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 2011, 321, 61–71. [Google Scholar] [CrossRef]
- Goldburg, R.; Naylor, R. Future seascapes, fishing and fish farming. Front. Ecol. 2005, 3, 21–28. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Kaushik, S.; Troell, M. Consumer confusion on seafood’s sustainability. Aquac. Eur. 2010, 35, 15–17. [Google Scholar]
- Tacon, A.G.J.; Metian, M.; Turchini, G.M.; De Silva, S.S. Responsible aquaculture and trophic level implications to global fish supply. Rev. Fish. Sci. 2010, 18, 94–105. [Google Scholar] [CrossRef]
- Alder, J.; Campbell, B.; Karpouzi, V.; Kaschner, K.; Pauly, D. Forage fish: From ecosystems to markets. Annu. Rev. Environ. Resour. 2008, 33, 153–166. [Google Scholar] [CrossRef]
- Bendiksen, E.Å.; Johnsen, C.A.; Olsen, H.J.; Jobling, M. Sustainable aquafeeds: Progress towards reduced reliance upon marine ingredients in diets for farmed Atlantic salmon (Salmo salar L.). Aquaculture 2011, 314, 132–139. [Google Scholar] [CrossRef]
- Marshall, D. Fishy Business: The Economics of Salmon Farming in BC; Canadian Centre for Policy Alternative—BC Office: Vancouver, BC, USA, 2003; p. 45. [Google Scholar]
- Costa-Pierce, B.A. Ecology as the paradigm for the future of aquaculture. In Ecological Aquaculture: The Evolution of the Blue Revolution; Costa-Pierce, B.A., Ed.; Blackwell Science: Malden, MA, USA, 2002; pp. 339–372. [Google Scholar]
- Bailey, C.; Jentoft, S.; Sinclair, P. Aquacultural Development: Social Dimensions of an Emerging Industry; Westview Press: Boulder, CO, USA, 1996; p. 300. [Google Scholar]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Bailey, C.M. The social consequences of tropical shrimp Mariculture development. Ocean Shorel. Manag. 1988, 11, 31–44. [Google Scholar] [CrossRef]
- Primavera, J.H. Socio-economic impacts of shrimp culture. Aquac. Res. 1997, 28, 815–827. [Google Scholar] [CrossRef]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.; Wu, H.; Liu, X.; Yao, Y.; Tao, L.; Liu, H. An integrated recirculating system (RAS) for land-based fish farming: The effect on water quality and fish production. Aquac. Eng. 2011, 45, 93–102. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verreth, J.A.J. The effect of recirculating aquaculture systems on the concentration of heavy metals in culture water and tissues of Nile tilapia Oreochromis niloticus. Food Chem. 2011, 126, 1001–1005. [Google Scholar] [CrossRef]
- Timmons, M.B.; Ebeling, J.M. Recirculating Aquaculture; Cayuga Aqua Ventures LLC: Ithaca, NY, USA, 2010; p. 948. [Google Scholar]
- Helfman, G.; Collette, B.B.; Facey, D.E.; Bowen, B.W. The Diversity of Fishes: Biology, Evolution, and Ecology, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2009; p. 736. [Google Scholar]
- Gutierrez-Wing, M.T.; Malone, R.F. Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquac. Eng. 2006, 34, 163–171. [Google Scholar] [CrossRef]
- Schreier, H.J.; Mirzoyan, N.; Saito, K. Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotechnol. 2010, 21, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Van Bussel, C.G.J.; Schroeder, J.P.; Wuertz, S.; Schulz, C. The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima). Aquaculture 2012, 326–329, 163–167. [Google Scholar] [CrossRef]
- Chavez-Crooker, P.; Obreque-Contreras, J. Bioremediation of aquaculture wastes. Curr. Opin. Biotechnol. 2010, 21, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, J.; Tal, Y.; Schreier, H.J. Denitrification in recirculating systems: Theory an applications. Aquac. Eng. 2006, 34, 364–376. [Google Scholar] [CrossRef]
- Schroeder, J.P.; Croot, P.L.; Von Dewitz, B.; Waller, U.; Hanel, R. Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems. Aquac. Eng. 2011, 45, 35–41. [Google Scholar] [CrossRef]
- Gonçalves, A.A.; Gagnon, G.A. Ozone application in recirculating aquaculture system: An overview. Ozone Sci. Eng. 2011, 33, 345–367. [Google Scholar] [CrossRef]
- Tal, Y.; Schreier, H.J.; Sowers, K.R.; Stubblefield, J.D.; Place, A.R. Environmentally sustainable land-based marine aquaculture. Aquaculture 2009, 286, 28–35. [Google Scholar] [CrossRef]
- Verdegem, M.C.J.; Bosma, R.H.; Verreth, J.A.J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 2006, 22, 101–113. [Google Scholar] [CrossRef]
- Singer, A.; Parnes, S.; Gross, A.; Sagi, A.; Brenner, A. A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture. Aquac. Eng. 2008, 39, 72–77. [Google Scholar] [CrossRef]
- Miller, D. Using aquaculture as a post-mining land use in West Virginia. Mine Water Environ. 2008, 27, 122–126. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Roque d’Orbcastel, E.; Verreth, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
- Heinen, J.M.; Hankins, J.A.; Adler, P.R. Water quality and waste production in recirculating trout culture system with feeding of a higher energy or a lower energy diet. Aquaculture 1996, 27, 699–710. [Google Scholar] [CrossRef]
- Mirzoyan, N.; Tal, Y.; Gross, A. Anaerobic digestion of sludge from intensive recirculating aquaculture sytems: Review. Aquaculture 2010, 306, 1–6. [Google Scholar] [CrossRef]
- Brown, N.; Eddy, S.; Plaud, S. Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture 2011, 322–323, 177–183. [Google Scholar] [CrossRef]
- Marsh, L.; Subler, S.; Mishra, S. Suitability of aquaculture effluent solids mixed with cardboard as a feedstock for vermicomposting. Bioresour. Technol. 2005, 96, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Piedrahita, R.H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 2003, 226, 35–44. [Google Scholar] [CrossRef]
- Cripps, S.J.; Bergheim, A. Solids management and removal for intensive land-based aquaculture production systems. Aquac. Eng. 2000, 22, 33–56. [Google Scholar] [CrossRef]
- Jeffery, K.R.; Stone, D.; Feist, S.W.; Verner-Jeffreys, D.W. An outbreak of disease caused by Francisella sp. in Nile tilapia Oreochromis niloticus at a recirculation fish farm in the UK. Dis. Aquat. Org. 2010, 91, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Ayer, N.W.; Tyedmers, P.H. Assessing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- D’Orbcastel, E.R.; Blancheton, J.P.; Aubin, J. Towards environmentally sustainable aquaculture: Comparison between two trout farming systems using life cycle assessment. Aquac. Eng. 2009, 40, 113–119. [Google Scholar] [CrossRef]
- Cahill, P.L.; Hurd, C.L.; Lokman, M. Keeping the water clean—Seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture. Aquaculture 2010, 306, 153–159. [Google Scholar] [CrossRef]
- Greiner, A.D.; Timmons, M.B. Evaluation of nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility. Aquac. Eng. 1998, 18, 189–200. [Google Scholar] [CrossRef]
- Van Rijn, J. The potential for integrated biological treatment systems in recirculating fish culture: A review. Aquaculture 1996, 139, 181–201. [Google Scholar] [CrossRef]
- Watten, B.J.; Sirbrell, P.L. Comparative performance of fixed film biological filters: Application of reactor theory. Aquac. Eng. 2006, 34, 193–213. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- Azim, M.E.; Verdegem, M.C.J.; van Dam, A.A.; Beveridge, M.C.M. (Eds.) Periphyton: Ecology, Exploitation, and Management; CABI: Oxfordshire, UK, 2006; 319p.
- Li, S. Energy structure and efficiency of a typical Chinese integrated fish farm. Aquaculture 1987, 65, 105–118. [Google Scholar] [CrossRef]
- Tian, Z.P.; Gao, F.M.; Sun, S.; Liu, S.Q.; Zhang, Y.L.; Li, L.X. Effects of the interculture of Mytilus edulis and Laminaria on the environment condition. Trans. Oceanol. Limnol. 1987, 2, 60–66. [Google Scholar]
- Wei, S.Q. Study of mixed culture of Gracilaria tenuistipitata, Penaeus penicillatus, and Seylla serrata. Acta Oceanol. Sin. 1990, 12, 388–394. [Google Scholar]
- Chan, G.L. Aquaculture, ecological engineering: Lessons from China. Ambio 1993, 22, 491–494. [Google Scholar]
- Qian, P.Y.; Wu, C.Y.; Wu, M.; Xie, Y.K. Integrated cultivation of the red alga Kappaphycus alvarezii and the pearl oyster Pinctada martensi. Aquaculture 1996, 147, 21–35. [Google Scholar] [CrossRef]
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; Zertuche-González, J.A.; Yarish, C.; Neefus, C. Integrating seaweeds into marine aquaculture systems: A key toward sustainability. J. Phycol. 2001, 37, 975–986. [Google Scholar] [CrossRef]
- Ruddle, K.; Zhong, G. Integrated Agriculture-Aquaculture in the South of China. The Dike-Pond System in the Zhujiang Delta; Cambridge University Press: Cambridge, UK, 1988; 173p. [Google Scholar]
- Merriam-Webster. Available online: http://www.merriam-webster.com/dictionary/polyculture (accessed on 11 September 2016).
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.G. Ecological engineering in aquaculture—Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Barrington, K.; Chopin, T.; Robinson, S. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In Integrated Mariculture: A Global Review; Soto, D., Ed.; FAO Fisheries and Aquaculture Technical Paper 529; FAO: Rome, Italy, 2009; pp. 7–46. [Google Scholar]
- Neori, A.; Chopin, T.; Troell, M. Integrated aquaculture: Rationale, evolution, and state of the art emphasizing seaweed biofiltration in modern Mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Sará, G.; Zenone, A.; Tomasello, A. Growth of Mytilus galloprovincialis (Mollusca, Bivalva) close to fish farms: A cases of integrated multi-trophic aquaculture within the Tyrrhenian Sea. Hydrobiologia 2009, 636, 129–136. [Google Scholar] [CrossRef]
- Abreu, M.H.; Varela, D.A.; Henríquez, L.; Villarroel, A.; Yarish, C.; Sousa-Pinto, I.; Buschmann, A.H. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C.J. Bird, J. McLachlan & E.C. Oliveira: Productivity and physiological performance. Aquaculture 2009, 293, 211–220. [Google Scholar]
- Huo, Y.; Wu, H.; Chai, Z. Bioremediations efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan Harbor, China. Aquaculture 2012, 326–329, 99–105. [Google Scholar] [CrossRef]
- Troell, M.; Halling, C.; Neori, A.; Chopin, T.; Buschmann, A.H.; Kautsky, N.; Yarish, C. Integrated mariculture: Asking the right questions. Aquaculture 2003, 226, 69–90. [Google Scholar] [CrossRef]
- Fei, X.G.; Bao, Y.; Lu, S. Seaweed cultivation-traditional way and its reformation. Oceanol. Limnol. Sin. 2000, 31, 575–580. [Google Scholar]
- Fei, X.G.; Tseng, C.K.; Pang, S.J.; Lian, S.X.; Huang, R.K.; Chen, W.Z. Transplant of Gracilaria lemaneiformis by raft culture on the sea along fish cages in southern China. In Proceedings of the World Aquaculture Society, Baton Rouge, LA, USA, 23–27 April 2002; p. 219.
- Buschmann, A.H.; Varela, D.A.; Hernández-González, M.C.; Huovinen, P. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: Determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. J. Appl. Phycol. 2008, 20, 571–577. [Google Scholar] [CrossRef]
- Stabili, L.; Licciano, M.; Giangrande, A.; Longo, C.; Mercurio, M.; Marzano, C.N.; Corriero, G. Filtering activity of Spongia officinalis var. adriatica (Schmidt) (Porifera, Demospongiae) on bacterioplankton: Implications for bioremediation of polluted seawater. Water Res. 2006, 40, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, B.A.; Robinson, S.M.C.; Barrington, K.A. Feeding activity of mussels (Mytilus edulis) held in the field at an integrated multi-trophic aquaculture (IMTA) site (Salmo salar) and exposed to fish food in the laboratory. Aquaculture 2011, 314, 244–251. [Google Scholar] [CrossRef]
- Handå, A.; Ranheim, A.; Olsen, A.J.; Altin, D.; Reitan, K.I.; Olsen, Y.; Altin, D.; Reitan, K.I.; Olsen, Y.; Reinertsen, H. Incorporation of salmon fish feed and feces components in mussels (Mytilus edulis): Implications for intergrated multi-trophic aquaculture in cool-temperate North Atlantic waters. Aquaculture 2012, 370–371, 40–53. [Google Scholar] [CrossRef]
- Lander, T.R.; Robinson, S.M.C.; MacDonald, B.A.; Martin, J.D. Characterization of the suspended organic particles released from salmon farms and their potential as a food supply for the suspension feeder, Mytilus edulis in integrated multi-trophic aquaculture (IMTA) systems. Aquaculture 2013, 406–407, 160–170. [Google Scholar] [CrossRef]
- Reid, G.K.; Liutkus, M.; Bennett, A. Absorption efficiency of blue mussels (Mytilus edulis and M. trossulus) feeding on Atlantic salmon (Salmo salar) feed and fecal particulates: Implications for integrated mulit-trophic aquaculture. Aquaculture 2010, 299, 165–169. [Google Scholar] [CrossRef]
- Pietrak, M.R.; Molloy, S.D.; Bouchard, D.A.; Singer, J.T.; Bricknell, I. Potential role of Mytilus edulis in modulating the infections pressure of Vibrio anguillarum 02β on an integrated multi-trophic aquaculture farm. Aquaculture 2012, 326–329, 36–39. [Google Scholar] [CrossRef]
- Molloy, S.D.; Pietrak, M.R.; Bouchard, D.A.; Bricknell, I. Ingestion of Lepeophtheirus salmonis by the blue mussel Mytilus edulis. Aquaculture 2011, 311, 61–64. [Google Scholar] [CrossRef]
- Skar, C.K.; Mortensen, S. Fate of infectious salmon anaemia virus (ISAV) in experimentally challenged blue mussels (Mytilus edulis). Dis. Aquat. Org. 2007, 74, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages—Potential for integrated multi-trophic aquaculture. Aquaculture 2013, 372–375, 28–38. [Google Scholar] [CrossRef]
- Slater, M.J.; Carton, A.G. Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition. Mar. Pollut. Bull. 2009, 58, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, C.L.E.; Stead, S.M.; Slater, M.J. Consumption and remediation of European seabass (Dicentrarchus labrax) waste by the sea cucumber Holothuria forskali. Aquac. Int. 2013, 21, 1279–1290. [Google Scholar] [CrossRef]
- Taboada, M.C.; González, M.; Rodríguez, E. Value and effects on digestive enzymes and serum lipids of the marine invertebrate Holothuria forskali. Nutr. Res. 2003, 23, 745–758. [Google Scholar] [CrossRef]
- Rodríguez, E.; González, M.; Caride, B.; Lamas, M.A.; Taboada, M.C. Nutritional value of Holothuria forskali protein and effects on serum lipid profile in rats. J. Physiol. Biochem. 2000, 56, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, S.; Anwar, F.; Saari, N. High-value components and bioactives from sea cucumbers for functional foods—A review. Mar. Drugs 2011, 9, 1761–1805. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, S.; Gerbaux, P.; Flammang, P. Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echindoermata) by mass spectrometry. Comp. Biochem. Physiol. B 2009, 152, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.H.; Kwon, J.Y.; Kim, Y.M. A beneficial co-culture: Charm abalone Haliotis discus hannai and sea cucumber Stichopus japonicus. Aquaculture 2003, 216, 87–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H.; Liu, S.; Yuan, X.; Mao, Y.; Liu, Y.; Xu, X.; Zhang, F. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 2006, 256, 510–520. [Google Scholar] [CrossRef]
- Paltzat, D.L.; Pearce, C.M.; Barnes, P.A.; McKinley, R.S. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters (Crossostrea gigas Thunberg). Aquaculture 2008, 275, 124–137. [Google Scholar] [CrossRef]
- Hannah, L.; Pearce, C.M.; Cross, S.F. Growth and survival of California sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture 2013, 406–407, 34–42. [Google Scholar] [CrossRef]
- Nelson, E.J.; MacDonald, B.A.; Robinson, S.M.C. The absorption efficiency of the suspension-feeding sea cucumber, Cucumaria frondosa, and its potential as an extractive integrated multi-trophic aquaculture (IMTA) species. Aquaculture 2012, 370–371, 19–25. [Google Scholar] [CrossRef]
- Zamora, L.N.; Jeffs, A.G. Feeding, selection, digestion, and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture 2011, 317, 223–228. [Google Scholar] [CrossRef]
- Zamora, L.N.; Jeffs, A.G. The ability of the deposit-feeding sea cucumber Australostichopus mollis to use natural variation in the biodesposits beneath mussel farms. Aquaculture 2012, 326–329, 116–122. [Google Scholar] [CrossRef]
- Slater, M.J.; Jeffs, A.G.; Carton, A.G. The use of waste from green-lipped mussels as a food source for juvenile sea cucumbers, Australostichopus mollis. Aquaculture 2009, 292, 219–224. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Licciano, M.; Mola, E.; Giangrande, A. Bioremediation of bacteria in aquaculture waste using the polychaete Sabella spallanzanii. New Biotechnol. 2010, 27, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Licciano, M.; Stabili, L.; Giangrande, A. Clearance rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a pure culture of Vibrio alginolyticus. Water Res. 2005, 39, 4375–4384. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Kikuchi, K. Nitrogen budget of polychaete Perinereis nuntia vallata fed on the feces of Japanese flounder. Fish. Sci. 2002, 68, 1304–1308. [Google Scholar] [CrossRef]
- Palmer, P.J. Polychaete-assisted sand filters. Aquaculture 2010, 306, 369–377. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Licciano, M.; Giangrande, A. The mucus of Sabella spallanzanii (Annelida, Polychaeta): Its involvement in chemical defence and fertilisation success. J. Exp. Mar. Biol. Ecol. 2009, 374, 144–149. [Google Scholar] [CrossRef]
- Milanese, M.; Chelossi, E.; Manconi, R.; Sará, A.; Sidri, M.; Pronzato, R. The marine sponge Chondrilla nucla Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomol. Eng. 2003, 20, 363–368. [Google Scholar] [CrossRef]
- Osinga, R.; Sidri, M.; Cerig, E.; Gokalp, S.Z.; Gokalp, M. Sponge aquaculture trials in the East-Mediterranean Sea: New approaches to earlier ideas. Open Mar. Biol. J. 2010, 4, 74–81. [Google Scholar] [CrossRef]
- Wijffels, R.H. Potential of sponges and mircoalgae for marine biotechnology. Trends Biotechnol. 2008, 26, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, M.; Matens, D.; Wijffels, R.H. Towards commercial production of sponge medicines. Mar. Drugs 2009, 7, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Sipkema, D.; Osinga, R.; Schatton, W.; Mendola, D.; Tramper, J.; Wijffels, R.H. Large-scale production of pharmaceuticals by marine sponges: Sea, cell, or synthesis. Biotechnol. Bioeng. 2005, 90, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Webster, N.S.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 2012, 14, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Chopin, T.; Robinson, S. Defining the appropriate regulatory and policy framework for the development of integrated multi-trophic aquaculture practises: Introduction to the workshop and positing of the issues. Bull. Aquac. Assoc. Can. 2004, 104, 4–10. [Google Scholar]
- Chopin, T.; Robinson, S.; Sawhney, M.; Bastarache, S.; Belyea, S.; Shea, R.; Armstrong, W.; Stewart, I.; Fitzgerald, P. The AquaNet integrated multi-trophic aquaculture project: Rationale of the project and development of kelp cultivation as the inorganic extractive component of the system. Bull. Aquac. Assoc. Can. 2004, 104, 11–18. [Google Scholar]
- Lander, T.R.; Barrington, K.A.; Robinson, S.M.C.; MacDonald, B.A.; Martin, J.D. Dynamic of the blue mussel as an extractive organism in an integrated multi-trophic aquaculture system. Bull. Aquac. Assoc. Can. 2004, 104, 19–28. [Google Scholar]
- Barrington, K.; Ridler, N.; Chopin, T.; Robinson, S.; Robinson, B. Social aspects of the sustainability of integrated multi-trophic aquaculture. Aquac. Int. 2010, 18, 201–211. [Google Scholar] [CrossRef]
- Skiftesvik, A.B.; Bjelland, R.M.; Durif, C.M.F.; Johansen, I.S.; Browman, H.I. Delousing of Atlantic salmon (Salmo salar) by cultured vs. wild ballan wrasse (Labrus bergylta). Aquaculture 2013, 402–403, 113–118. [Google Scholar] [CrossRef]
- Imsland, A.K.; Reynolds, P.; Eliassen, G.; Hangstad, T.A.; Foss, A.; Vikingstad, E.; Elvegård, T.A. The use of lumpfish (Cyclopterus lumpus L.) to control sea lice (Lepeophtheirus salmonis Krøyer) infestations in intensively farmed Atlantic salmon (Salmo salar L.). Aquaculture 2014, 424–425, 18–23. [Google Scholar] [CrossRef]
- Roheim, C.A.; Asche, F.; Santos, J.I. The elusive price premium for ecolabelled products: Evidence from seafood in the UK market. J. Agric. Econ. 2011, 62, 655–668. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, X.; Chen, W.; Zhang, G.; Duan, H.; Ju, M.; Li, H.; Yang, Z. China’s special marine protected area policy: Trade-off between economic development and marine conservation. Ocean Coast. Manag. 2013, 76, 1–11. [Google Scholar] [CrossRef]
- Culver, K.; Castle, D. Aquaculture, Innovation, and Social Transformation; Springer Science and Business Media: Berlin, Germany, 2008; Volume 17, p. 344. [Google Scholar]
- Chopin, T. Progression of the integrated multi-trophic aquaculture (IMTA) concept and upscaling of IMTA systems towards commercialization. Aquac. Eur. 2011, 36, 5–12. [Google Scholar]
- Bunting, S.W.; Shpigel, M. Evaluating the economic potential of horizontally integrated land-based marine aquaculture. Aquaculture 2009, 294, 43–51. [Google Scholar] [CrossRef]
- Shpigel, M.; Ben-Ezra, D.; Shauli, L.; Sagi, M.; Ventura, Y.; Samocha, T.; Lee, J.J. Constructed wetland with Salicornia as a biofilter for Mariculture effluent. Aquaculture 2013, 412–413, 52–63. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands, 2nd ed.; CRS Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Buhmann, A.; Papenbrock, J. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environ. Exp. Bot. 2013, 92, 122–133. [Google Scholar] [CrossRef]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y.; Wang, T.W. Nutrient removal from aquaculture wastewater using a constructed wetland system. Aquaculture 2002, 209, 169–184. [Google Scholar] [CrossRef]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y.; Wang, T.W. Removal of solids and oxygen demand from aquaculture wastewater with a constructed wetland system in the start-up phase. Water Environ. Res. 2002, 74, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Gelbrecht, J.; Rennert, B. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 2003, 217, 207–221. [Google Scholar] [CrossRef]
- Schwartz, M.F.; Boyd, C.E. Constructed wetlands for treatment of channel catfish pond effluents. Progress. Fish-Cult. 1995, 57, 255–267. [Google Scholar] [CrossRef]
- Tilley, D.R.; Badrinarayanan, H.; Rosati, R.; Son, J. Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquac. Eng. 2002, 26, 81–109. [Google Scholar] [CrossRef]
- Singh, D.; Buhmann, A.K.; Flowers, T.J.; Seal, C.E.; Papenbrock, J. Salicornia as a crop plant in temperate regions: Selection of genetically characterised ecotypes and optimisation of their cultivation conditions. AoB Plants 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Ramani, B.; Reeck, T.; Debez, A.; Stelzer, R.; Huchzermeyer, B.; Schmidt, A.; Papenbrock, J. Ater tripolium L. and Sesuvium portulacastrum L.: Two halophytes, two strategies to survive in saline habitats. Plant Physiol. Biochem. 2006, 44, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Buhmann, A.K.; Waller, U.; Wecker, B.; Papenbrock, J. Optimisation of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric. Water Manag. 2015, 149, 102–114. [Google Scholar] [CrossRef]
- Díaz, F.J.; Benes, S.E.; Grattan, S.R. Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin Valley of California. Agric. Water Manag. 2013, 118, 59–69. [Google Scholar] [CrossRef]
- Lymbery, A.J.; Doupe, R.G.; Bennett, T.; Starcevich, M.R. Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquac. Eng. 2006, 34, 1–7. [Google Scholar] [CrossRef]
- Traynor, C.H. Juncus kraussii harvesting in Umlalazi nature reserve, KwaZulu-Natal, South Africa: Socio-economic aspects and sustainability. Afr. J. Aquat. Sci. 2008, 33, 27–36. [Google Scholar] [CrossRef]
- Cardoch, L.; Day, J.W.; Rybczyk, J.M.; Kemp, G.P. An economic analysis of using wetlands for treatment of shrimp processing wastewater—A case study in Dulac, LA. Ecol. Econ. 2000, 38, 93–101. [Google Scholar] [CrossRef]
- Sindilariu, P.D.; Wolter, C.; Reiter, R. Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture 2008, 277, 179–184. [Google Scholar] [CrossRef]
- Webb, J.M.; Quintã, R.; Papadimitriou, S.; Norman, L.; Rigby, M.; Thoma, D.N.; Le Vay, L. Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Res. 2012, 46, 5102–5114. [Google Scholar] [CrossRef] [PubMed]
- Price, L.L. From pedestrian fare to gourmet trend: The case of Salicornia europaea L., a traditional gathered wild seashore vegetable. In Changing Families and Their Lifestyles; Moerbeek, H.H., Niehof, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; Volume 2, pp. 201–211. [Google Scholar]
- Guil, J.L.; Rodriguez-Garcia, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Rhee, M.H.; Park, H.-J.; Cho, J.Y. Salicornia herbacea: Botanical, chemical, and pharmacological review of halophyte marsh plant. J. Med. Plants Res. 2009, 3, 548–555. [Google Scholar]
- Lee, S.; Kong, D.H.; Yun, S.H.; Lee, K.P.; Franzblau, S.G.; Lee, E.Y.; Chang, C.L. Evaluation of a modified antimycobacterial susceptibility test using Middlebrook 7H10 agar containing 2,3-diphenyl-5-thienyl-(2)-tetrazolium chloride. J. Microbiol. Methods 2006, 66, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Glenn, E.P.; Brown, J.; Blumwald, E. Irrigating crops with seawater. Sci. Am. 1998, 279, 56–61. [Google Scholar] [CrossRef]
- Abdal, M.S. Salicornia production in Kuwait. World Appl. Sci. J. 2009, 6, 1033–1038. [Google Scholar]
- Liu, X.G.; Xia, Y.G.; Wang, F.; Sun, M.; Jin, Z.J.; Wang, G.T. Analysis of fatty acid composition of Salicornia europaea L. seed oil. Food Sci. 2005, 2, 42. [Google Scholar]
- Glenn, E.P.; O’Leary, J.W.; Watson, M.C.; Thompson, T.L.; Kuehl, R.O. Salicornia bigelovii Torr.: An oilseed halophyte for seawater irrigation. Science 1991, 251, 1065–1067. [Google Scholar] [CrossRef] [PubMed]
- Aghaleh, M.; Niknam, V.; Ebrahimzadeh, H.; Razavi, K. Antioxidative enzymes in two in vitro cultured Salicornia species in response to increasing salinity. Biol. Plant. 2014, 58, 391–394. [Google Scholar] [CrossRef]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y.; Chang, Y.F.; Chen, Y.M.; Shih, K.C. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ. Pollut. 2005, 134, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Sindilariu, P.D.; Reiter, R.; Wedekind, H. Impact of trout aquaculture on water quality and farm effluent treatment options. Aquat. Living Resour. 2009, 22, 93–103. [Google Scholar] [CrossRef]
- Sindilariu, P.D.; Brinker, A.; Reiter, R. Factors influencing the efficiency of constructed wetlands used for the treatment of intensive trout farm effluent. Ecol. Eng. 2009, 35, 711–722. [Google Scholar] [CrossRef]
- Lakkireddy, K.K.R.; Kasturi, K.; Sambasiva Rao, K.R.S. Role of hydroponics and aeroponics in soilless culture in commercial food production. Res. Rev. J. Agric. Sci. Technol. 2012, 1, 26–35. [Google Scholar]
- Jones, J.B., Jr. Hydroponics—A Practical Guide for the Soilless Grower, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; p. 440. [Google Scholar]
- Jensen, M.H. Hydroponics worldwide—A technical overview. Int. Symp. Grow. Med. Hydroponics 1997, 481, 719–730. [Google Scholar]
- Steiner, A.A. The history of mineral plant nutrition until about 1860 as a source of the origin of soilless culture methods. Soil. Cult. 1985, 1, 7–24. [Google Scholar]
- Gericke, W.F. Aquaculture: A means of crop production. Am. J. Bot. 1929, 16, 862. [Google Scholar]
- Gericke, W.F. Hydroponics—Crop production in liquid culture media. Science 1937, 85, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Gericke, W.F. The Complete Guide to Soilless Gardening; Prentice-Hall: New York, NY, USA, 1940; p. 304. [Google Scholar]
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An international survey of aquaponics practitioners. PLoS ONE 2014, 9, e102662. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.H.; Collins, W.L. Hydroponic vegetable production. Hortic. Rev. 1985, 7, 1–44. [Google Scholar]
- Jensen, M.H. Deep flow hydroponics—Past, present and future. In Proceedings of the 30th National Agricultural Plastics Congress, San Diego, CA, USA, 17–19 August 2002; Volume 30, pp. 40–46.
- Hu, M.H.; Ao, Y.S.; Yang, X.E.; Li, T.Q. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system. Agric. Water Manag. 2008, 95, 607–615. [Google Scholar] [CrossRef]
- Park, J.-S.; Kurata, K. Application of microbubbles to hydroponics solution promotes lettuce growth. HortTechnology 2009, 19, 212–215. [Google Scholar]
- Graves, C.J. The nutrient film technique. Hortic. Rev. 1983, 5, 1–44. [Google Scholar]
- Morgan, L. Introduction to hydroponic gullies and channels. Grow. Edge 1999, 106, 67–75. [Google Scholar]
- Smith, B. A short history of NFT gully design. Grow. Edge 2004, 15, 79–82. [Google Scholar]
- Johnson, B. Greenhouse nutrient management: Regulations and treatment options. Grow. Edge 2002, 13, 38–43. [Google Scholar]
- Ignatius, A.; Arunbabu, V.; Neethu, J.; Ramasamy, E.V. Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environ. Sci. Pollut. Res. 2014, 21, 13007–13016. [Google Scholar] [CrossRef] [PubMed]
- Carter, W.A. A method of growing plants in water vapour to facilitate examination of roots. Phytopathology 1942, 32, 623–625. [Google Scholar]
- Nickols, M. Aeroponics: Production systems and research tools. Grow. Edge 2002, 13, 30–35. [Google Scholar]
- Gunning, D. Cultivating Salicornia europaea (Marsh Samphire); Irish Sea Fisheries Board: Dublin, Ireland, 2016; pp. 1–92. Available online: http://www.bim.ie/our-publications/ (accessed on 15 September 2016).
- Christie, C.B.; Nichols, M.A. Aeroponics—Production system and research tool. Acta Hortic. 2004, 648, 185–190. [Google Scholar] [CrossRef]
- Barak, P.; Smith, J.D.; Kreuger, A.R.; Peterson, L.A. Measurement of short-term nutrient uptake rates in cranberry by aeroponics. Plant Cell Environ. 1996, 19, 237–242. [Google Scholar] [CrossRef]
- Nir, I. Growing plants in aeroponics growth system. Acta Hortic. 1982, 126, 435–448. [Google Scholar] [CrossRef]
- Movahedi, Z.; Moieni, A.; Soroushzadeh, A. Comparison of aeroponics and conventional soil systems for potato minituber production and evaluation of their quality characters. J. Plant Physiol. Breed. 2012, 2, 13–21. [Google Scholar]
- Blidariu, F.; Grozea, A. Increasing the economical efficiency and sustainability of indoor fish farming by means of aquaponics—Review. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 1–8. [Google Scholar]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef]
- Shete, A.P.; Verma, A.K.; Chadha, N.K.; Prakash, C.; Peter, R.M.; Ahmad, I.; Nuwansi, K.K.T. Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyrinus carpio) and Mint (Mentha arvensis). Aquac. Eng. 2016, 72, 53–57. [Google Scholar] [CrossRef]
- Buzby, K.M.; Lin, L. Scaling aquaponic systems: Balancing plant uptake with fish output. Aquac. Eng. 2014, 63, 39–44. [Google Scholar] [CrossRef]
- Salam, M.A.; Hashem, S.; Asadujjaman, M.; Li, F. Nutrient recovery from in fish farming wastewater: An aquaponic system for plant and fish integration. World J. Fish Mar. Sci. 2014, 6, 355–360. [Google Scholar]
- Goddek, S.; Espinal, C.A.; Delaide, B.; Jijakli, M.H.; Schmautz, Z.; Wuertz, S.; Keesman, K.J. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water 2016, 8, 1–29. [Google Scholar] [CrossRef]
- Seawright, D.E.; Stickney, R.R.; Walker, R.B. Nutrient dynamics in integrated aquaculture—Hydroponic systems. Aquaculture 1998, 160, 215–237. [Google Scholar] [CrossRef]
- Rakocy, J.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture; SRAC Publication: Stoneville, MS, USA, 2006; No. 454; p. 16. [Google Scholar]
- Endut, A.; Jusoh, A.; Ali, N.; Wan Nik, W.N.S.; Hassan, A. Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalination Water Treat. 2009, 5, 19–28. [Google Scholar] [CrossRef]
- Lennard, W.A.; Leonard, B.V. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Tyson, R.V.; Treadwell, D.D.; Simonne, E.H. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 2011, 21, 6–13. [Google Scholar]
- Bohl, M. Some initial aquaculture experiments in recirculating water systems. Aquaculture 1977, 11, 323–328. [Google Scholar] [CrossRef]
- Collins, M.T.; Gratzek, J.B.; Shotts, E.B., Jr.; Dawe, D.L.; Campbell, L.M.; Senn, D.R. Nitrification in an aquatic recirculating system. J. Fish. Res. Board Can. 1975, 32, 2025–2031. [Google Scholar] [CrossRef]
- Naegel, L.C.A. Combined production of fish and plants in recirculating water. Aquaculture 1977, 10, 17–24. [Google Scholar] [CrossRef]
- Lewis, W.M.; Yop, J.H.; Schramm, H.L., Jr.; Brandenburg, A.M. Use of hydroponics to maintain quality of recirculated water in a fish culture system. Trans. Am. Fish. Soc. 1978, 107, 92–99. [Google Scholar] [CrossRef]
- Sneed, K.; Allen, K.; Ellis, J. Fish farming and hydroponics. Aquac. Fish Farmer 1975, 2, 18–20. [Google Scholar]
- Sutton, R.J.; Lewis, W.M. Further observations on a fish production system that incorporates hydroponically grown plants. Prog. Fish Cult. 1982, 44, 55–59. [Google Scholar] [CrossRef]
- Todd, J. Dreaming in my own backyard. J. New Alchem. 1980, 6, 108–111. [Google Scholar]
- Zweig, R.D. An integrated fish culture hydroponic vegetable production systems. Aquac. Mag. 1986, 1, 34–40. [Google Scholar]
- Diver, S.; Rinehart, L. Aquaponics—Integration of hydroponics with agriculture. ATTRA Natl. Sustain. Agric. Inf. Serv. 2010, 28, 1–28. [Google Scholar]
- Graber, A.; Junge, R. Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.B.W.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic systems. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, J.W.; Kennedy, J.O.S. Economic benefits of integrating a hydroponic-lettuce system into a barramundi fish production system. Aquac. Econ. Manag. 2010, 14, 81–96. [Google Scholar] [CrossRef]
- Al-Hafedh, Y.S.; Alam, A.; Beltagi, M.S. Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J. World Aquac. Soc. 2008, 39, 510–520. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production. Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper No. 589; FAO: Rome, Italy, 2014; 262p. [Google Scholar]
- University of Hawaii Aquaponics Workforce Development. Available online: http://www.hawaiiaquaponicsworkforce.com/faqs-2.html (accessed on 13 September 2016).
- Tyson, R.V.; Simonne, E.H.; Treadwell, D.D.; White, J.M.; Simonne, A. Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. HortScience 2008, 43, 719–724. [Google Scholar]
- Tyson, R.V.; Simonne, E.H.; Treadwell, D.D.; Davis, M.; White, J.M. Effect of water pH on yield and nutritional status of cucumber grown in recirculating hydroponics. J. Plant Nutr. 2008, 31, 2018–2030. [Google Scholar] [CrossRef]
- Fronte, B.; Galliano, G.; Bibbiani, C. From freshwater to marine aquaponic: New opportunities for marine fish species production. In Proceedings of the 4th Conference with International Participation Conference VIVUS on Agriculture, Environmentalism, Horticulture and Floristics, Food Production and Processing and Nutrition, Naklo, Slovenia, 20–21 April 2016.
- Turcios, A.E.; Papenbrock, J. Sustainable treatment of aquaculture effluents—What can we learn for the past for the future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef] [Green Version]
- Joesting, H.M.; Blaylock, R.; Biber, P.; Ray, A. The use of marine aquaculture solid waste for nursery of salt marsh plants Spartina alterniflora and Juncus roemerianus. Aquac. Rep. 2016, 3, 108–114. [Google Scholar] [CrossRef]
- Buhmann, A.; Papenbrock, J. An economic point of view of secondary compounds in halophytes. Funct. Plant Biol. 2013, 40, 952–967. [Google Scholar] [CrossRef]
- Boxman, S.; Main, K.; Nystrom, M.; Ergas, S.J.; Trotz, M.A. Aquaponic System Produces Red Drum, Saltwater Vegetable Species; Global Aquaculture Advocate: Portsmouth, NH, USA, 2015; pp. 58–60. [Google Scholar]
- Pantanella, E. Integrated Marine Aquaculture-Agriculture: Sea Farming out of the Sea; Global Aquaculture Advocate: Portsmouth, NH, USA, 2012; pp. 70–72. [Google Scholar]
- Wilson, G. Seaweed is the common denominator in exciting saltwater aquaponics. Aquaponics J. 2005, 36, 12–16. [Google Scholar]
- Gunning, D.; Harman, L.; Keily, M.; Nunan, R.; Jones, P.; Horgan, B.; Burnell, G. Designing a marine aquaponics (maraponics) system to model IMTA. In Proceedings of the Aquaculture Europe Conference 2014, San Sebastian, Spain, 14–17 October 2014; Available online: https://www.was.org/easonline/documents/MeetingPresentations/AE2014/AE2014_0681.pdf (accessed on 13 September 2016).
- Gunning, D.; Fernández, T.; Dick, J.; Sprague, M.; Betancor, M.; Burnell, G. Mapping the Production and Recycling of Fatty Acids through Different Trophic Levels in a Marine Aquaponics System (Maraponics). Available online: https://www.was.org/EasOnline/Mobile/Paper.aspx?i=6697 (accessed on 13 September 2016).
- Maraponics Ireland. Available online: http://www.maraponics.com/ (accessed on 13 September 2016).
- Waller, U.; Buhmann, A.K.; Ernst, A.; Hanke, V.; Kulakowski, A.; Wecker, B.; Orellana, J.; Papenbrock, J. Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquac. Int. 2015, 23, 1473–1489. [Google Scholar] [CrossRef]
- Boxman, S.E.; Nystrom, M.; Capodice, J.C.; Ergas, S.J.; Main, K.L.; Trotz, M.A. Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquac. Res. 2016. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Potential of producing Salicornia bigelovii hydroponically as a vegetable at moderate NaCl salinity. HortScience 2014, 4999, 1154–1157. [Google Scholar]
- Reimold, R.J.; Queen, W.H. Ecology of Halophytes; Academic Press Inc.: New York, NY, USA; London, UK, 1974; 620p. [Google Scholar]
- Haines, K.C. Growth of the carrageenan-producing tropical red seaweed Hypnea musciformis in surface water, 870 m deep water, effluent from a clam mariculture system, and in deep water enriched with artificial fertilizers or domestic sewage. In 10th Symposium on Marine Biology; Persoone, G., Jaspers, E., Eds.; University Press: Wtteren, Belgium, 1976; Volume 1, pp. 207–220. [Google Scholar]
- Langton, R.W.; Haines, K.C.; Lyon, R.E. Ammonia nitrogen produced by the bivalve mollusc Tapes japonica and its recovery by the red seaweed Hypnea musciformis in a tropical mariculture system. Helgol. Wiss. Meeresunters. 1977, 30, 217–229. [Google Scholar] [CrossRef]
- Vandermeulen, H.; Gordin, H. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: Mass culture and treatment of effluent. J. Appl. Phycol. 1990, 2, 363–374. [Google Scholar] [CrossRef]
- Neori, A.; Cohen, I.; Gordin, H. Ulva lactuca biofilters for marine fish-pond effluents: II. Growth rate, yield, and C:N ratio. Bot. Mar. 1991, 34, 483–489. [Google Scholar] [CrossRef]
- Jimenez del Río, M.; Ramazanov, Z.; García-Reina, G. Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia 1996, 326/327, 61–67. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Troell, M.; Kautsky, N.; Kautsky, L. Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). Hydrobiologia 1996, 326/327, 75–82. [Google Scholar] [CrossRef]
- Chow, F.; Macciavello, J.; Santa Cruz, S.; Fonck, O. Utilization of Gracilaria chilensis (Rhodophyta: Gracilariaccae) as biofilter in the depuration of effluents from tank cultures of fish, oyster, and sea urchins. J. World Aquac. Soc. 2001, 32, 214–220. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Alejandro, H.; Buschmann, A.H.; Sousa-Pinto, I. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Pantanella, E.; Bhujel, C.R. Saline Aquaponics—Potential Player in Food, Energy Production; Global Aquaculture Advocate: Portsmouth, NH, USA, 2015; pp. 42–43. [Google Scholar]
- Dufault, R.J.; Korkmaz, A.; Ward, B. Potential of biosolids from shrimp aquaculture as a fertiliser for broccoli production. Compost Sci. Util. 2001, 9, 107–114. [Google Scholar] [CrossRef]
- Dufault, R.J.; Korkmaz, A. Potential of biosolids from shrimp aquaculture as a fertiliser in bell pepper production. Compost Sci. Util. 2000, 3, 310–319. [Google Scholar] [CrossRef]
- Neori, A.; Shpigel, M.; Ben-Ezra, D. A sustainable integrated system for culture of fish, seaweed, and abalone. Aquaculture 2000, 186, 279–291. [Google Scholar] [CrossRef]
- Pantanella, E.; Colla, G. Saline aquaponics opportunities for integrated marine aquaculture. In Proceedings of the International Aquaponic Conference: Aquaponics and Global Food Security, University of Wisconsin, Stevens Point, WI, USA, 19–21 June 2013.
- Hart, E.R.; Webb, J.B.; Danylchuk, A.J. Implementation of aquaponics in education: An assessment of challenges and solutions. Sci. Educ. Int. 2013, 24, 460–480. [Google Scholar]
- Nitrifying Bacteria Facts. Available online: http://www.bioconlabs.com/nitribactfacts.html (accessed on 1 September 2016).
- Hollyer, J.; Tamaru, C.; Riggs, A.; Klinger-Bowen, R.; Howerton, R.; Okimoto, D.; Castro, L.; Ron, T.R.; Fox, K.; Troegner, V.; et al. On-farm food safety: Aquaponics. Food Saf. Technol. 2009. Available online: http://www.ctahr.hawaii.edu/oc/freepubs/pdf/FST-38.pdf (accessed on 14 December 2016).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunning, D.; Maguire, J.; Burnell, G. The Development of Sustainable Saltwater-Based Food Production Systems: A Review of Established and Novel Concepts. Water 2016, 8, 598. https://doi.org/10.3390/w8120598
Gunning D, Maguire J, Burnell G. The Development of Sustainable Saltwater-Based Food Production Systems: A Review of Established and Novel Concepts. Water. 2016; 8(12):598. https://doi.org/10.3390/w8120598
Chicago/Turabian StyleGunning, Daryl, Julie Maguire, and Gavin Burnell. 2016. "The Development of Sustainable Saltwater-Based Food Production Systems: A Review of Established and Novel Concepts" Water 8, no. 12: 598. https://doi.org/10.3390/w8120598
APA StyleGunning, D., Maguire, J., & Burnell, G. (2016). The Development of Sustainable Saltwater-Based Food Production Systems: A Review of Established and Novel Concepts. Water, 8(12), 598. https://doi.org/10.3390/w8120598