Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review
Abstract
:1. Introduction
2. Water Quality
- elevated temperature increases the metabolism, respiration and oxygen demand of fish;
- fish increase their oxygen uptake after feeding due to the oxygen demand required for feed processing, called specific dynamic action;
- oxygen consumption is proportional to the size and number of fish in a given system;
- smaller fish use more oxygen per unit weight than larger fish;
- stressful conditions such as impaired gill function, exposure to stressors and decrease in oxygen-carrying capacity lead to the increase in oxygen demand of fish.
3. Feeds and Micronutrients
4. Wastes and Faeces
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ghaly, A.E.; Kamal, M.; Mahmoud, N.S. Phytoremediation of aquaculture wastewater for water recycling and production of fish feed. Environ. Int. 2005, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Segner, H.; Sundh, H.; Buchmann, K.; Douxfils, J.; Sundell, K.S.; Mathieu, C.; Ruane, N.; Jutfelt, F.; Toften, H.; Vaughan, L. Health of farmed fish: Its relation to fish welfare and its utility as welfare indicator. Fish Physiol. Biochem. 2012, 38, 85–105. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M. Fish welfare in aquaculture. J. Aquac. Res. Dev. 2013, 4, e107. [Google Scholar] [CrossRef]
- MacIntrye, M.C.; Ellis, T.; North, B.P.; Turnbull, J.F. The Influences of water quality on the welfare of farmed rainbow trout: A Review. In Fish Welfare; Branson, E.J., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 150–178. [Google Scholar]
- Person-Le Ruyet, J.; Labbé, L.; Le Bayon, N.; Sévère, A.; Le Roux, A.; Le Delliou, H.; Quéméner, L. Combined effects of water quality and stocking density on welfare and growth of rainbow trout (Oncorhynchus mykiss). Aquat. Living Resour. 2008, 21, 185–195. [Google Scholar] [CrossRef]
- Stoskopf, M. Fish Medicine; W.B. Saunders Company: Philadelphia, PA, USA, 1993. [Google Scholar]
- Colt, J.E.; Tomasso, J.R. Hatchery water supply and treatment. In Fish Hatchery Management, 2nd ed.; American Fisheries Society: Bethesda, MD, USA, 2002. [Google Scholar]
- Jones, D.R. The effect of hypoxia and anemia on the swimming performance of rainbow trout (Salmo gairdneri). J. Exp. Biol. 1971, 55, 541–551. [Google Scholar] [PubMed]
- Wedemeyer, G.A. Physiology of Fish in Intensive Culture Systems; Chapman & Hall: New York, NY, USA, 1996. [Google Scholar]
- Evans, D.H.; Piermarini, M.P.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef] [PubMed]
- Randall, D.J.; Tsui, T.K.N. Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef]
- Masser, M.P.; James Rakocy, J.; Thomas, M.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: An Overview of Critical Considerations; SRAC Publication No. 452; SRAC Publication: Stoneville, MS, USA, 1999. [Google Scholar]
- Thangam, Y. Histopathological studies on nitrite toxicity to freshwater fish, Cirrhinus mrigala. IOSR JESTFT 2014, 8, 2319–2402. [Google Scholar] [CrossRef]
- Jensen, F.B. Nitrite disrupts multiple physiological functions in aquatic animals. Comp. Biochem. Physiol. A 2003, 135, 9–24. [Google Scholar] [CrossRef]
- Eddy, F.B.; Kunzlik, P.A.; Bath, R.N. Uptake and loss of nitrite from the blood of rainbow trout, Salmo gairdneri Richardson, and Atlantic salmon, Salmo salar L., in fresh water and in dilute sea water. J. Fish Biol. 1983, 23, 105–116. [Google Scholar] [CrossRef]
- Kroupova, H.; Machova, J.; Svobodova, Z. Nitrite influence on fish: A review. Vet. Med. 2005, 11, 461–471. [Google Scholar]
- Yildiz, H.Y.; Köksal, G.; Borazan, G.; Benli, A.C.K. Nitrite-induced methemoglobinemia in Nile tilapia, Oreochromis niloticus. J. Appl. Ichthyol. 2006, 22, 426–431. [Google Scholar] [CrossRef]
- Bowser, P.R.; Falls, W.W.; VanZandt, J.; Collier, N.; Phillips, J.D. Methaemoglobinaemia in channel catfish:methods of prevention. Prog. Fish-Cult. 1983, 45, 154–158. [Google Scholar] [CrossRef]
- Svobodova, Z.; Machova, J.; Poleszczuk, G.; Huda, J.; Hamackova, J.; Kroupova, H. Nitrite poisoning of fish in aquaculture facilities with water-recirculating systems: Three case studies. Acta Vet. Brno 2005, 74, 129–137. [Google Scholar] [CrossRef]
- Tucker, C.S.; Schwedler, T.E. Acclimation of channel catfish (Ictalurus punctatus) to nitrite. Bull. Environ. Contam. Toxicol. 1983, 30, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.M.; Eddy, F.B. Chloride uptake in freshwater teleosts and its relationship to nitrite uptake and toxicity. J. Comp. Physiol. B 1986, 156, 867–872. [Google Scholar] [CrossRef]
- Luo, S.; Wu, B.; Xiong, X.; Wang, J. Short-term toxicity of ammonia, nitrite, and nitrate to early life stages of the rare minnow (Gobiocypris rarus). Environ. Toxicol. Chem. 2016, 35, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 2006, 257, 346–358. [Google Scholar] [CrossRef]
- Davidson, J.; Good, C.; Welsh, C.; Summerfelt, T. Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems. Aquac. Eng. 2014, 59, 30–40. [Google Scholar] [CrossRef]
- Buzby, K.M.; Lin, L.S. Scaling aquaponics systems: Balancing plant uptake with fish output. Aquac. Eng. 2014, 63, 39–44. [Google Scholar] [CrossRef]
- Goddek, S.; Espinal, C.A.; Delaide, B.; Jijakli, M.H.; Schmautz, Z.; Wuertz, S.; Keesman, K. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water 2016, 8, 303. [Google Scholar] [CrossRef]
- Timmons, M.B.; Ebeling, J.M.; Wheaton, F.W.; Summerfelt, S.T.; Vinci, B.J. Recirculating Aquaculture Systems, 2nd ed.; Cayuga Aqua Ventures: New York, NY, USA, 2002. [Google Scholar]
- Tyson, R.V.; Simonne, E.H.; White, J.M.; Lamb, E.M. Reconciling water parameters impacting nitrification in aquaponics: The pH levels. Proc. Fla. State Hortic. Soc. 2004, 117, 79–83. [Google Scholar]
- Cerozi, S.D.; Fitzsimmons, K. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour. Technol. 2016, 219, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Summerfelt, S.T. Understanding and treating carbondioxide problems. Aquac. Mag. 2002, 28, 30–33. [Google Scholar]
- Aydin, F.; Tunca, R.; Yavuzcan Yildiz, H.; Kul, O. Nephrocalcinosis in intensively reared rainbow trout (Oncorhynchus mykiss). Isr. J. Aquac. Bamidgeh 2000, 52, 111–117. [Google Scholar]
- Lichtenstein, E.P. Absorption of some chlorinated hydrocarbon insecticides from soils into various crops. J. Agric. Food Chem. 1959, 7, 430–433. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Górecka, H.; Górecki, H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 2005, 337, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.H.; Li, H.B.; Hu, F.; Xu, X.H.; Wang, P. Allelochemicals released by rice roots and residues in soil. Plant Soil 2006, 288, 47–56. [Google Scholar] [CrossRef]
- Kumar, K.; Gupta, S.C.; Baidoo, S.K.; Chander, Y.; Rosen, C.J. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual. 2005, 34, 2082–2085. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.C.; Summerfelt, S.T. Diseases encountered in rainbow trout cultured in recirculating systems. Annu. Rev. Fish Dis. 1996, 6, 65–92. [Google Scholar] [CrossRef]
- Eichinger, E.; Bruckner, A.; Stemmer, M. Earthworm expulsion by formalin has severe and lasting side effects on soil biota and plants. Ecotoxicol. Environ. Saf. 2007, 67, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press Inc.: Orlando, FL, USA, 1984. [Google Scholar]
- Belz, R.G.; Velini, E.D.; Duke, S.O. Dose/response relationships in allelopathy research. In Allelopathy: New Concepts and Methodology; Fujii, Y., Hidrate, S., Parvez, M.M., Eds.; Science Publishers: Enfield, NH, USA, 2007; pp. 3–30. [Google Scholar]
- Martins, C.I.M.; Galhardo, L.; Noble, C.; Damsgård, B.; Spedicato, M.T.; Zupa, W.; Beauchaud, M.; Kulczykowska, E.; Massabuau, J.C.; Carter, T.; et al. Behavioural indicators of welfare in farmed fish. Fish Physiol. Biochem. 2012, 38, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Gross, W. Algae affecting lettuce growth in hydroponic systems. J. Hortic. Sci. Biotechnol. 2004, 79, 554–559. [Google Scholar] [CrossRef]
- Inderjit; Dakshini, K.M.M. Algal allelopathy. Bot. Rev. 1994, 60, 182–196. [Google Scholar] [CrossRef]
- Chorus, I. Cyanotoxins. Occurrence, Causes, Consequences; Springer: Berlin, Germany, 2001. [Google Scholar]
- Chalmers, G.A. Aquaponics and Food Safety. Available online: http://www.fastonline.org/images/manuals/Aquaculture/Aquaponic_Information/Aquaponics_and_Food_Safety.pdf (accessed on 25 December 2016).
- Timmons, M.B.; Ebeling, J.M. Recirculating Aquaculture, 3rd ed.; Ithaca Publishing Company LLC: Ithaca, NY, USA, 2013. [Google Scholar]
- Palm, H.W.; Bissa, K.; Knaus, U. Significant factors affecting the economic sustainability of closed aquaponic systems. Part II: Fish and plant growth. Aquac. Aquar. Conserv. Legis. Int. J. Bioflux Soc. 2014, 7, 3. [Google Scholar]
- Kristiansen, T.S.; Ferno, A. Individual behaviour and growth of halibut (Hippoglossus hippoglossus L.) fed sinking and floating feed: Evidence of different coping styles. Appl. Anim. Behav. Sci. 2007, 104, 236–250. [Google Scholar] [CrossRef]
- Knaus, U.; Palm, H.W. A New Method to Assess the Steady State Conditions of a Coupled Small-Scale Ebb-and-Flood Aquaponic System; Aquaculture Europe: Edinburg, UK, 2016. [Google Scholar]
- Rakocy, J.E.; Bailey, D.S.; Shultz, K.A.; Cole, W.M. Evaluation of a commercial-scale aquaponic unit for the production of tilapia and lettuce. In Proceedings of the 4th International Symposium on Tilapia in Aquaculture, Orlando, FL, USA, 9–12 November 1997; Fitzsimmons, K., Ed.; Food Products Press: New York, NY, USA, 2006; pp. 357–372. [Google Scholar]
- Roosta, H.R.; Hamidpour, M. Mineral nutrient content of tomato plants in aquaponic and hydroponic systems: Effect of foliar application of some macro- and micro-nutrients. J. Plant Nutr. 2013, 36, 2070–2083. [Google Scholar] [CrossRef]
- Fageria, N.K.; Barbosa Filho, M.P.; Moreira, A.; Guimarães, C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Whittamore, J.M. Osmoregulation and epithelial water transport: Lessons from the intestine of marine teleost fish. J. Comp. Physiol. B 2012, 182, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Halver, J.E.; Hardy, R.W. Fish Nutrition, 3rd ed.; Academic Press: London, UK, 2002. [Google Scholar]
- Tang, Q.Q.; Feng, L.; Jiang, W.D.; Liu, Y.; Jiang, J.; Li, S.H.; Kuang, S.Y.; Tang, L.; Zhou, X.Q. Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella). Biol. Trace Elem. Res. 2013, 155, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kiron, V.; Satoh, S. Trace minerals in fish nutrition. Aquaculture 1997, 151, 185–207. [Google Scholar] [CrossRef]
- Bury, N.; Grosell, M. Iron acquisition by teleost fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 135, 97–105. [Google Scholar] [CrossRef]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Academic Press, Inc., Harcourt Brace Jovanovich: San Diego, CA, USA, 1992. [Google Scholar]
- Knox, D.; Cowey, C.B.; Adron, J.W. The effect of low dietary manganese intake on rainbow trout (Salmo gairdneri). Br. J. Nutr. 1981, 46, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.D.; Tang, R.J.; Liu, Y.; Kuang, S.Y.; Jiang, J.; Wu, P.; Zhao, J.; Zhang, Y.A.; Tang, L.; Tang, W.N.; et al. Manganese deficiency or excess caused the depression of intestinal immunity, induction of inflammation and dysfunction of the intestinal physical barrier, as regulated by NF-κB, TOR and Nrf2 signalling, in grass carp (Ctenopharyngodon idella). Fish Shellfish Inmunol. 2015, 46, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Role of zinc in bone formation and bone resorption. J. Trace Elem. Exp. Med. 1998, 11, 119–135. [Google Scholar] [CrossRef]
- Bury, N.R.; Walker, P.A.; Glover, C.N. Nutritive metal uptake in teleost fish. J. Exp. Biol. 2003, 206, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, W.-X. Waterborne cadmium and zinc uptake in a euryhaline teleost Acanthopagrus schlegeli acclimated to different salinities. Aquat. Toxicol. 2007, 84, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, W.-X. Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegeli. Aquat. Toxicol. 2007, 85, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, P.A.J.; Schrama, J.W.; Kaushik, S.J. Mineral requirements of fish: A systematic review. Rev. Aquac. 2014, 6, 1–48. [Google Scholar]
- Hogstrand, C.; Verbosi, P.M.; Bonga, S.E.W.; Wood, C.M. Mechanisms of zinc uptake in gills of freshwater rainbow trout: Interplay with calcium transport. Am. J. Physiol. 1996, 270, R1141–R1147. [Google Scholar] [PubMed]
- Alsop, D.H.; Wood, C.M. Influence of waterborn cations on zinc uptake and toxicity in rainbow trout, Oncorhynchus mykiss. Can. J. Fish. Aquat. Sci. 1999, 56, 2012–2119. [Google Scholar] [CrossRef]
- Hansen, J.A.; Welsh, P.G.; Lipton, J.; Cacela, D.; Dailey, A.D. Relative sensitivity of Bull Trout (Salvelinus confluentus) and Rainbow Trout (Oncorynchus mykiss) to acute exposures of Cadmium and Zinc. Environ. Toxicol. Chem. 2002, 21, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, D.; Montero, D.; Robaina, L.; Hamre, K.; Terova, G.; Karalazos, V.; Izquierdo, M.S. Dietary minerals and vitamins requirements for gilthead seabream (Sparus aurata) juveniles fed diets high in vegetable ingredients. In Proceedings of the International Symposium on Fish Nutrition and Feeding, Sun Valley, ID, USA, 5–10 June 2016.
- Cripps, S.J.; Bergheim, A. Solids management and removal for intensive land-based aquaculture production systems. Aquac. Eng. 2000, 22, 33–56. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Losordo, T.M.; Westers, H. System carrying capacity and flow estimation. In Aquaculture Water Reuse Systems. Engineering Design and Management; Timmons, M.B., Losordo, T.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 9–60. [Google Scholar]
- Beveridge, M. Cage Aquaculture; Fishing News Ltd.: Farnham, UK, 1987. [Google Scholar]
- Hoelzi, A.; Vens-Cappell, B. Profitability of food-fish production in net cages. Fisch. Teichwirt 1980, 32, 2–5. [Google Scholar]
- Penczak, T.; Galicka, W.; Molinski, M.; Kusto, E.; Zalewski, M. The enrichment of a mesotrophic lake by carbon, phosphorus and nitrogen from the cage aquaculture of rainbow trout, Salmo gairdneri. J. Appl. Ecol. 1982, 19, 371–393. [Google Scholar] [CrossRef]
- Neto, M.R.; Ostrensky, A. Nutrient load estimation in the waste of Nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquac. Res. 2015, 46, 1309–1322. [Google Scholar] [CrossRef]
- Reid, G.K.; Liutkus, M.; Robinson, S.M.C.; Chopin, T.R.; Blair, T.; Lander, T.; Mullen, J.; Page, F.; Moccia, R.D. A review of the biophysical properties of salmonid faeces: Implications for aquaculture waste dispersal models and integrated multi-trophic aquaculture. Aquac. Res. 2009, 40, 257–273. [Google Scholar] [CrossRef]
- Butz, I.; Vens-Cappell, B. Organic load from the metabolic products of rainbow trout fed with dry food. In Proceedings of the Workshop on Fish Farm Effluents, Silkeborg, Denmark, 26–28 May 1981; Albaster, J.S., Ed.; EIFAC Technical Papers No. 41. FAO: Rome, Italy, 1982; pp. 57–70. [Google Scholar]
- Pettersson, K. The mobility of phosphorus in fish-foods and fecals. Verh. Int. Ver. Limnol. 1988, 23, 200–206. [Google Scholar]
- Johnsen, F.; Hillestad, M.; Austreng, E. High energy diets for Atlantic salmon. Effect on pollution. In Fish Nutrition in Practice; Kaushik, S.J., Luquet, P., Eds.; INRA: Paris, France, 1993; pp. 391–401. [Google Scholar]
- Hakanson, L.; Wrvik, A.; Makinene, T.; Molleg, B. Basic Concepts Concerning Assessments of Environmental Effects of Marine Fish Farms; Nordic Council of Ministers: Copenhagen, Denmark, 1988. [Google Scholar]
- Kristiansen, G.; Hessen, D.O. Nitrogen and phosphorus excretion from the noble crayfish, Astacus astacus L., in relation to food type and temperature. Aquaculture 1992, 102, 245–264. [Google Scholar] [CrossRef]
- Amirkolaie, A.K. Reduction in the environmental impact of waste discharged by fish farms through feed and feeding. Rev. Aquac. 2011, 3, 19–26. [Google Scholar] [CrossRef]
- Kibria, G.; Nugegoda, D.; Fairclough, R.; Lam, P. The nutrient content and the release of nutrients from fish food and faeces. Hydrobiologia 1997, 357, 165–171. [Google Scholar] [CrossRef]
- Storebakken, T.; Austreng, E. Ration level for salmonids. II. Growth, feed intake, protein digestibility, body composition, and feed conversion in rainbow trout weighing 0.5–1.0 kg. Aquaculture 1987, 60, 207–221. [Google Scholar] [CrossRef]
- Hankins, J.A.; Summerfelt, S.T.; Durant, M.D. Impacts of feeding and stock management strategies upon fish production within water recycle systems. In Aquacultural Engineering and Waste Management; Timmons, M.B., Ed.; Northeast Regional Agricultural Engineering Service: Ithaca, NY, USA, 1990; pp. 70–86. [Google Scholar]
- Buryniuk, M.; Petrell, R.J.; Baldwin, S.; Victor, K.V. Accumulation and natural disintegration of solid wastes caught on a screen suspended below a fish farm cage. Aquac. Eng. 2006, 35, 78–90. [Google Scholar] [CrossRef]
- Chen, Y.S.; Beveridge, M.C.M.; Telfer, T.C. Settling rate characteristics and nutrient content of the faeces of Atlantic salmon, Salmo salar L. and the implications for modeling of solid waste dispersion. Aquac. Res. 1999, 30, 395–398. [Google Scholar] [CrossRef]
- Magill, S.H.; Thetmeyer, H.; Cromey, C.J. Settling velocity of fecal pellets of gilthead sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) and sensitivity analysis using measured data in a deposition model. Aquaculture 2006, 251, 295–305. [Google Scholar] [CrossRef]
- Hardy, R.W.; Barrows, F.T. Diet formulation and manufacture. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: New York, NY, USA, 2002; pp. 507–600. [Google Scholar]
- Lovell, R.T. Nutrition and Feeding of Fish; Van Nostrand Reinhold: New York, NY, USA, 1989. [Google Scholar]
- Liang, J.-Y.; Chien, Y.-H. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia-water spinach raft aquaponics system. Int. Biodeterior. Biodegrad. 2013, 85, 693–700. [Google Scholar] [CrossRef]
- Unger, J.; Brinker, A. Feed and treat: What to expect from commercial diets. Aquac. Eng. 2013, 53, 19–29. [Google Scholar] [CrossRef]
- Patterson, R.N.; Watts, K.C.; Timmons, M.B. The power law in particle size analysis for aquacultural facilities. Aquac. Eng. 1999, 19, 259–273. [Google Scholar] [CrossRef]
- Bruton, M.N. The effects of suspended solids on fish. Hydrobiologia 1985, 125, 221–241. [Google Scholar] [CrossRef]
- Redding, J.M.; Schreck, C.B.; Everest, F.H. Physiological effects on coho salmon and steelhead of exposure to suspended solids. Trans. Am. Fish. Soc. 1987, 116, 737–744. [Google Scholar] [CrossRef]
- Newcombe, C.P.; MacDonald, D.D. Effects of suspended sediments on aquatic ecosystems. N. Am. J. Fish. Manag. 1991, 11, 72–82. [Google Scholar] [CrossRef]
- Servizi, J.A.; Martens, D.W. Effect of temperature, season, and fish size on acute lethality of suspended sediments to coho salmon, Oncorhynchus kisutch. Can. J. Fish. Aquat. Sci. 1991, 48, 493–497. [Google Scholar] [CrossRef]
- Martens, D.W.; Servizi, J.A. Suspended sediment particles inside gills and spleen of juvenile Pacific salmon (Oncorhynchus spp.). Can. J. Fish. Aquat. Sci. 1993, 50, 586–590. [Google Scholar] [CrossRef]
- Metzeling, L.; Doeg, T.; O’Connor, W. The impact of salinization and sedimentation on aquatic biota. In Conservation Biodiversity: Threats and Solutions; Bradstock, R.A., Auld, T.D., Keith, D.A., Kingsford, R.T., Lunney, D., Silvertsen, D.P., Eds.; Surrey Beatty: London, UK, 1995. [Google Scholar]
- Department of Fisheries and Oceans (DFO). Effects of Sediment on Fish and Their Habitat; Pacific Region Habitat Status Report 2000/01; DFO: Nanaimo, BC, Canada, 2000.
- Hughes, G.M.; Morgan, M. The structure of fish gills in relation to their respiratory function. Biol. Rev. 1973, 48, 419–475. [Google Scholar] [CrossRef]
- Servizi, J.A.; Gordon, R.W. Acute lethal toxicity of ammonia and SS mixtures to Chinook salmon (Oncorhynchus tshawytscha). Bull. Environ. Contam. Toxicol. 1990, 44, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Au, D.W.T.; Pollino, C.A.; Wu, R.S.S.; Shin, P.K.S.; Lau, S.T.F.; Tang, J.Y.M. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper Epinephelus coioides. Mar. Ecol. Prog. Ser. 2004, 266, 255–264. [Google Scholar] [CrossRef]
- Randall, D.J.; Daxboeck, C. Oxygen and carbon dioxide transfer across fish gills. In Fish Physiology; Hoar, W.S., Randall, D.J., Eds.; Academic Press: Orlando, FL, USA, 1984; Volume 10A, pp. 263–314. [Google Scholar]
- Randall, D.J.; Wright, P.A. Ammonia distribution and excretion in fish. Fish Physiol. Biochem. 1987, 3, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Wilber, D.H.; Clarke, D.G. Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. N. Am. J. Fish. Manag. 2001, 21, 855–858. [Google Scholar] [CrossRef]
- Lake, R.G.; Hinch, S.G. Acute effects of suspended sediment angularity on juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 1999, 56, 862–867. [Google Scholar] [CrossRef]
- Ling, J.; Chen, S. Impact of organic carbon on nitrification performance of different biofilters. Aquac. Eng. 2005, 33, 150–162. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008, 42, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, H.; Hoffmann, R.; Jörgensen, L.; Krüner, G.; Peters, G.; Schlotfeldt, H.-J.; Schomann, H. Water management in circular tanks of a commercial intensive culture unit and its effects on water quality and fish condition. In Proceedings of the ICES Statutory Meeting, C.M. 1982/F:22, Copenhagen, Denmark, 11 October 1982; ICES: Copenhagen, Denmark, 1982; p. 13. [Google Scholar]
- Klontz, W.; Stewart, B.C.; Eib, D.W. On the etiology and pathophysiology of environmental gill disease in juvenile salmonids. In Fish and Shellfish Pathology; Ellis, A.E., Ed.; Academic Press: London, UK, 1985; pp. 199–210. [Google Scholar]
- Braaten, B.; Poppe, T.; Jacobsen, P.; Maroni, K. Risks from self-pollution in aquaculture: Evaluation and consequences. In Efficiency in Aquaculture Production: Disease and Control, Proceedings of the 3rd International Conference on Aquafarming “Acquacoltura ’86”, Verona, Italy, 9–10 October 1986; Grimaldi, E., Rosenthal, H., Eds.; Edizioni del Sole 24 ore: Milano, Italy, 1988; pp. 139–165. [Google Scholar]
- Liltved, H.; Cripps, S.J. Removal of particle associated bacteria by prefiltration and ultraviolet irradiation. Aquac. Res. 1999, 30, 445–450. [Google Scholar] [CrossRef]
- Welch, E.B.; Lindell, T. Ecological effects of wastewater. In Applied Limnology and Pollution Effects; E & FN Spon: New York, NY, USA, 1992; p. 425. [Google Scholar]
- Lekang, O.-I. (Ed.) Aquaculture Engineering; John Wiley & Sons: Oxford, UK, 2013.
- Thorarinsdottir, R.I. Aquaponics Guidelines; Haskolaprent: Reykjavik, Iceland, 2015. [Google Scholar]
- Vilbergsson, B.; Oddsson, G.V.; Unnthorsson, R. Taxonomy of means and ends in aquaculture production—Part 2: The technical solutions of controlling solids, dissolved gasses and pH. Water 2016, 8, 387. [Google Scholar] [CrossRef]
- Anonymous. Opinion on the Welfare of the Farmed Fish. Farm Animal Welfare Committee. February 2014. Available online: www.defra.gov.uk/fawc (accessed on 28 September 2016). [Google Scholar]
Organism Type | Temperature (°C) | pH | Ammonia (ppm) | Nitrite (ppm) | Nitrate (ppm) | Dissolved Oxygen (ppm) |
---|---|---|---|---|---|---|
Warmwater fishes | 22–32 | 6–8.5 | <3 | <1 | <400 | 4–6 |
Coldwater fishes | 10–18 | 6–8.5 | <1 | <0.1 | <400 | 6–8 |
Plants | 16–30 | 5.5–7.5 | <30 | <1 | - | >3 |
Bacteria | 14–34 | 6–8.5 | <3 | <1 | - | 4–8 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yavuzcan Yildiz, H.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water 2017, 9, 13. https://doi.org/10.3390/w9010013
Yavuzcan Yildiz H, Robaina L, Pirhonen J, Mente E, Domínguez D, Parisi G. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water. 2017; 9(1):13. https://doi.org/10.3390/w9010013
Chicago/Turabian StyleYavuzcan Yildiz, Hijran, Lidia Robaina, Juhani Pirhonen, Elena Mente, David Domínguez, and Giuliana Parisi. 2017. "Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review" Water 9, no. 1: 13. https://doi.org/10.3390/w9010013
APA StyleYavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water, 9(1), 13. https://doi.org/10.3390/w9010013