Impacts of Floods on Organic Carbon Concentrations in Alluvial Soils along Hydrological Gradients Using a Digital Elevation Model (DEM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Sites and Collection of Soil Samples
2.2. Soil Analysis Methods
2.3. Statistical Analyses
3. Results
3.1. Textural Variability and Soil Acidity
3.2. Surface Soil Litter
3.3. Total Organic Carbon Content
3.4. TOC and Other Properties in the Soil Profiles
3.5. Spatial Distribution of Organic Carbon with a DEM
4. Discussions
4.1. Alluvial Soil Properties
4.2. Surface Litter and Organic Carbon
4.3. TOC Variation and Modeling of Elevation Levels
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krull, E.S.; Baldock, J.A.; Skjemstad, J.O. Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 2003, 30, 207–222. [Google Scholar] [CrossRef]
- Cookson, W.R.; Abaye, D.A.; Marschner, P.; Murphy, D.V.; Scotkdale, E.A.; Goulding, K.W.T. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol. Biochem. 2005, 37, 1726–1737. [Google Scholar] [CrossRef]
- Cabezas, A.; Comín, F.A. Carbon and nitrogen accretion in the topsoil of the Middle Ebro River Floodplains (NE Spain): Implications for their ecological restoration. Ecol. Eng. 2010, 36, 640–652. [Google Scholar] [CrossRef]
- Batlle-Aguilar, J.; Brovelli, A.; Luster, J.; Shrestha, J.; Niklaus, P.A.; Barry, D.A. Analysis of carbon and nitrogen dynamics in riparian soils: Model validation and sensitivity to environmental controls. Sci. Total Environ. 2012, 429, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sinoga, J.D.; Pariente, S.; Diaz, A.R.; Martinez Murillo, J.F. Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena 2012, 94, 17–25. [Google Scholar] [CrossRef]
- Groenendijk, F.M.; Condron, L.M.; Rijske, W.C. Effects of afforestation on organic carbon, nitrogen and sulfur concentrations in New Zealand hill country soils. Geoderma 2002, 108, 91–100. [Google Scholar] [CrossRef]
- Fu, X.; Shao, M.; Wei, X.; Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 2010, 155, 31–35. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Brovelli, A.; Batlle-Aguilar, J.; Barry, D.A. Analysis of carbon and nitrogen dynamics in riparian soils: Model development. Sci. Total Environ. 2012, 429, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Pandey, C.B.; Sidhu, G.S.; Sarkar, D.; Sagar, R. Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena 2011, 87, 78–89. [Google Scholar] [CrossRef]
- Fang, X.; Xue, Z.; Li, B.; An, S. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 2012, 88, 6–13. [Google Scholar] [CrossRef]
- Kothyari, U.C.; Jain, M.K.; Ranga, K.G. Estimation of temporal variation of sediment yield using GIS/Estimation de la variation temporelle de l'exportation sédimentaire grâce à un SIG. Hydrol. Sci. J. 2002, 47, 693–706. (In French) [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 2008, 34, 311–323. [Google Scholar] [CrossRef]
- Blazejewski, G.A.; Stolt, M.H.; Gold, A.J.; Gurwick, N.; Groffman, P.M. Spatial distribution of carbon in the subsurface of riparian zones. Soil Sci. Soc. Amer. J. 2009, 73, 1733–1740. [Google Scholar] [CrossRef]
- Dai, F.; Su, Z.; Liu, S.; Liu, G. Temporal variation of soil organic matter content and potential determinants in Tibet, China. Catena 2011, 85, 288–294. [Google Scholar] [CrossRef]
- Doetter, S.; Berthe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 2016, 154, 202–212. [Google Scholar]
- Nadeu, E.; Van Oostb, K.; Boix-Fayosa, C.; Joris de Venteaa, J. Importance of land use patterns for erosion-induced carbon fluxes in a Mediterranean catchment. Agric. Ecos. Environ. 2014, 189, 181–189. [Google Scholar] [CrossRef]
- Schilling, K.E.; Palmer, J.A.; Bettis, E.A., III; Jacobson, P.; Schultz, R.C.; Isenhart, T.M. Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa. Catena 2009, 77, 266–273. [Google Scholar] [CrossRef]
- Clilverd, H.M.; Thompson, J.R.; Heppell, C.M.; Sayer, C.D.; Axmacher, J.C. River–floodplain hydrology of an embanked lowland Chalk river and initial response to embankment removal. Hydrol. Sci. J. 2013, 58, 627–650. [Google Scholar] [CrossRef]
- Benedetti, M.M. Controls on overbank deposition in the Upper Mississippi River. Geomorphology 2003, 56, 271–290. [Google Scholar] [CrossRef]
- Obermann, M.; Froebrich, J.; Perrin, J.L.; Tournoud, M.G. Impact of significant floods on the annual load in an agricultural catchement in the Mediterranean. J. Hydrol. 2007, 334, 99–108. [Google Scholar] [CrossRef]
- Berhongaray, G.; Alvarez, R.; De Paepe, J.; Caride, C.; Cantet, R. Land use effects on soil carbon in the Argentine Pampas. Geoderma 2013, 192, 97–110. [Google Scholar] [CrossRef]
- Birkel, C.; Soulsby, C.; Tetzlaff, D. Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrol. Sci. J. 2015, 57, 1543–1561. [Google Scholar] [CrossRef]
- Chaplot, V.; Poesen, J. Sediment, soil organic carbon and runoff delivery at various spatial scales. Catena 2012, 88, 46–56. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Y.; Li, Y. Spatial and temporal variations of suspended sediment deposition in the alluvial reach of the upper Yellow River from 1952 to 2007. Catena 2012, 92, 30–37. [Google Scholar] [CrossRef]
- Bayley, S.E.; Guimond, J.K. Aboveground biomass and nutrient limitation in relation to river connectivity in Montane Floodplain Marshes. Wetlands 2009, 29, 1243–1254. [Google Scholar] [CrossRef]
- Saint-Laurent, D.; St-Laurent, J.; Lavoie, L.; Drouin, A.; Ghaleb, B. Floodplain sedimentation rates, soil properties and recent flood history in Southern Québec. Global Planet. Change 2010, 70, 76–91. [Google Scholar] [CrossRef]
- Drouin, A.; Saint-Laurent, D.; Lavoie, L.; Ouellet, C. High-Precision Digital Elevation Model to evaluate the spatial distribution of soil organic carbon in active floodplains. Wetlands 2011, 31, 1151–1164. [Google Scholar] [CrossRef]
- Franklin, S.B.; Kupfer, J.A.; Pezeshki, S.R.; Gentry, R.; Smith, D. Complex effects of channelization and levee construction on Western Tennessee floodplain forest function. Wetlands 2009, 29, 451–464. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Assada, T.; Hassan, F.M.; Warner, B.G.; Douabul, A.; Al-Hilli, M.R.A.; Alwan, A.A. Vegetation response to Re-flooding in the Mesopotamian Wetlands, South Irak. Wetlands 2010, 30, 177–188. [Google Scholar] [CrossRef]
- Lavoie, L.; Saint-Laurent, D.; St-Laurent, J. Pedological and sedimentological analyses of alluvial soils and paleosols on floodplain terraces. Can. J. Soil Sci. 2006, 86, 813–826. [Google Scholar] [CrossRef]
- Berthelot, J.-S.; Saint-Laurent, D.; Gervais-Beaulac, V.; Présent, A. A comparison of the composition and diversity of tree populations along a hydrological gradient in floodplains (Southern Québec, Canada). Forests 2015, 6, 929–956. [Google Scholar] [CrossRef]
- MDDEP (Ministère du Développement durable, de l’Environnement et des Parcs). Normales climatiques du Québec, 1981–2010. Gouvernement du Québec, Québec, Canada, 2014. Available online: http://www.mddep.gouv.qc.ca/climat/normales/index.asp (accessed on 12 April 2015).
- Environnement Canada & Ministère de l’Environnement du Québec. Carte des Zones Inondables en eau Libre, Bassin de la Rivière Saint-François; Échelle 1:10 000, carte: 31H09-100-5229 (réf.: ES-82-06); Gouvernement du Québec: Québec, Canada, 1982. [Google Scholar]
- CSCW (Canadian Soil Classification Working Group). The Canadian System of Soil Classification, 3rd ed.; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 1646; p. 187. [Google Scholar]
- McKeague, J.A. Manual on Soil Sampling and Methods of Analysis, 2nd ed.; Canada Soil Survey, Subcommittee on Methods of Analysis: Ottawa, ON, Canada, 1998; p. 212. [Google Scholar]
- Saint-Laurent, D.; St-Laurent, J.; Lavoie, L.; Ghaleb, B. Use geopedological methods for the evaluation of sedimentation rates on river floodplains. Catena 2008, 73, 321–337. [Google Scholar] [CrossRef]
- Gervais-Beaulac, V.; Saint-Laurent, D.; Berthelot, J.-S. Organic carbon distribution in alluvial soils according to different flood risk zones. J. Soil Sc. Env. Manag. 2013, 4, 169–177. [Google Scholar] [CrossRef]
- MEMR (Ministère de l’énergie, des mines et des ressources). Carte de Dépôts de Surface, Feuillet 31H9, Richmond, 1:50,000; 6ième édition; Centre canadien de cartographie: Ottawa, ON, Canada, 1989. (In French) [Google Scholar]
- Centre d’expertise hydrique du Québec (CEHQ). Données historiques des débits et niveau d’eau. Gouvernement du Québec. 2015. Available online: http://www.cehq.gouv.qc.ca/ (accessed on 22 May 2015). [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Comm. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Bechtold, J.S.; Naiman, R.J. A quantitative model of soil organic matter accumulation during floodplain primary succession. Ecosystems 2009, 12, 1352–1368. [Google Scholar] [CrossRef]
- Duchaufour, P. Introduction à la Science du sol–Sol, Végétation, Environnement, 6th ed.; Dunod: Paris, France, 2004. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson ed.: Columbus, OH, USA, 2008. [Google Scholar]
- Van Miegroet, H.; Cole, D.W. The impact of nitrification on soil acidification and cation leaching in a red alder ecosystem. J. Environ. Qual. 1984, 13, 586–590. [Google Scholar] [CrossRef]
- Böhme, L.; Langer, U.; Böhme, F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric. Ecosyst. Environ. 2005, 109, 141–152. [Google Scholar] [CrossRef]
- Diodato, N.; Gericke, A.; Bellocchi, G. Modelling the inter-annual variability of sediment yields: A case study for the upper Lech River. Catena 2012, 97, 12–19. [Google Scholar] [CrossRef]
- Rasmussen, C.; Southard, R.J.; Horwath, W.R. Litter type and soil minerals control temperate forest soil carbon response to climate change. Glob. Change Biol. 2008, 14, 2064–2080. [Google Scholar] [CrossRef]
- Jindaluang, W.; Kheoruenromne, I.; Suddhiprakarn, A.; Bhupinder, P.S.; Balwant, S. Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils of Thailand. Geoderma 2013, 195/196, 207–219. [Google Scholar] [CrossRef]
- Daniels, J.M. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology 2003, 56, 225–242. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, A. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Chacón, N.; Dezzeo, N.; Muñoz, B.; Rodríguez, J.M. Implications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco River, Venezuela. Biogeochemistry 2005, 73, 555–566. [Google Scholar] [CrossRef]
- Wainright, S.C.; Couch, C.A.; Meyer, J.L. Fluxes of bacteria and organic matter into a blackwater river from river sediments and floodplain soils. Freshwater Biol. 1992, 28, 37–48. [Google Scholar] [CrossRef]
Sector/Saint-François River | Location | Station | Period | Mean Annual Discharge (m3/s) a | Maximum Discharge (m3/s) | Minimum Discharge (m3/s) | Number of Recorded Floods (1900–2015) b | Return Period c |
---|---|---|---|---|---|---|---|---|
Drummondville | 45°51′42″ N | 030203 | 1925–1994 | 205.6 | 2420 | 28.9 | - | - |
72°27′11″ W | ||||||||
Sherbrooke | 45°24′22″ N | 030208 | 1919–2015 | 156.1 | 1633 | 12.2 | 63 | 1.82 |
72°53′20″ W | ||||||||
Weedon | 45°93′31″ N | 030278 | 1977–2015 | 38.7 | 361 | 0.6 | - | - |
71°28′07″ W | ||||||||
Windsor/Melbourne | 45°33′50″ N | 030204 | 1935–1973 | 165.2 | 2080 | 18.9 | 39 | 2.94 |
72°00′21″ W | ||||||||
Richmond (Water level) | 45°39′32″ N | 030205 | 1915–1974 | 21.9 | 28 | 19.6 | 45 | 2.55 |
72°08′35″ W | (Wl) | (Wl) | (Wl) |
Zone | pH CaCl2 | TOC (%) | Bulk Density (g/cm3) a | Clay (%) | Silt (%) | Sand (%) | Texture b | Main Color (Munsell) c |
---|---|---|---|---|---|---|---|---|
Frequent Flood zone (FFz) (n = 65 sites) | ||||||||
Mean Standard deviation | 5.08 ± 0.65 | 1.74 ± 0.85 | 1.00 ± 0.17 | 4.6 ± 4.0 | 43.5 ± 17.7 | 51.9 ± 15.9 | Sandy loam, silt loam | 10YR 3/2 |
10YR 4/2 | ||||||||
10YR 5/2 | ||||||||
2.5Y 4/3 | ||||||||
Variation coefficient | 12.8 | 48.8 | 17.0 | 86.9 | 40.7 | 31.2 | ||
Moderate Flood zone (MFz) (n = 33 sites) | ||||||||
Mean Standard deviation | 4.21 ± 0.80 | 3.34 ± 1.09 | 0.99 ± 0.25 | 1.9 ± 0.8 | 47.3 ± 9.7 | 50.8 ± 10.2 | Sandy loam, loamy sand, silt loam | 10YR 3/2 |
10YR 4/1 | ||||||||
10YR 4/2 | ||||||||
2.5Y 5/3 | ||||||||
Variation coefficient | 19.0 | 32.6 | 25.2 | 40.2 | 20.5 | 20.1 | ||
No-Flood zone (NFz) (n = 39 sites) | ||||||||
Mean Standard deviation | 4.19 ± 0.85 | 3.54 ± 1.77 | 1.08 ± 0.24 | 2.3 ± 2.1 | 45.6 ± 11.6 | 52.1 ± 13.3 | Sandy loam, loamy sand | 10YR 3/1.5 |
10YR 3/2 | ||||||||
10YR 4/2 | ||||||||
10YR 5/3 | ||||||||
Variation coefficient | 20.2 | 50.0 | 22.2 | 91.3 | 25.4 | 25.5 |
Soil Biomass (Litter) | Thickness (cm) | Description |
---|---|---|
Frequent Flood zone (FFz) (n = 65) | ||
Frequency (%) | 24 | Vegetation cover dominated by hardwoods and by herbs (especially ferns: Matteuccia spp.). Litter rarely present (frequency 24%); litter composition: twigs and grass stems. Absence of Ah horizon and low differentiation of soil layers. |
Max–Min | 5.5–0 | |
Moderate Flood zone (MFz) (n = 39) | ||
Frequency (%) | 99 | Vegetation cover dominated by hardwoods and shrubs. Litter present (frequency 99%); litter composition: moss, twigs and leaves. Presence of Ah horizon (often thin); litter on the ground; root density low to medium. |
Max–Min | 11–0 | |
No-Flood zone (NFz) (n = 45) | ||
Frequency (%) | 99 | Vegetation cover dominated by hardwoods and some conifers. Litter present (frequency 99%); litter composition: needles, dead leaves, twigs, moss and herbs, thin humified layers. Presence of Ah horizon (thick or thin); litter on the ground; root density moderate to strong. |
Max–Min | 13–0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saint-Laurent, D.; Paradis, R.; Drouin, A.; Gervais-Beaulac, V. Impacts of Floods on Organic Carbon Concentrations in Alluvial Soils along Hydrological Gradients Using a Digital Elevation Model (DEM). Water 2016, 8, 208. https://doi.org/10.3390/w8050208
Saint-Laurent D, Paradis R, Drouin A, Gervais-Beaulac V. Impacts of Floods on Organic Carbon Concentrations in Alluvial Soils along Hydrological Gradients Using a Digital Elevation Model (DEM). Water. 2016; 8(5):208. https://doi.org/10.3390/w8050208
Chicago/Turabian StyleSaint-Laurent, Diane, Roxane Paradis, Ariane Drouin, and Vernhar Gervais-Beaulac. 2016. "Impacts of Floods on Organic Carbon Concentrations in Alluvial Soils along Hydrological Gradients Using a Digital Elevation Model (DEM)" Water 8, no. 5: 208. https://doi.org/10.3390/w8050208
APA StyleSaint-Laurent, D., Paradis, R., Drouin, A., & Gervais-Beaulac, V. (2016). Impacts of Floods on Organic Carbon Concentrations in Alluvial Soils along Hydrological Gradients Using a Digital Elevation Model (DEM). Water, 8(5), 208. https://doi.org/10.3390/w8050208