Numerical Simulation of Soil Evaporation with Sand Mulching and Inclusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
3. Model Formulation
3.1. Formulation of a Geometric Model
3.2. Geometric Models of Soil Columns with Different Sand-Mulch Thicknesses and Depths of Sand Inclusions
3.3. Boundary Conditions
3.4. General Flow Law
3.5. Partial Differential Water and Heat Flow Equations
3.6. Coupling Heat and Mass Equations
4. Results and Discussion
4.1. Model Validation
4.2. Model Application
4.2.1. Effects of Sand Mulching and Inclusion on Cumulative Evaporation
4.2.2. Effects of Sand Mulching and Inclusion on Volumetric Water Content
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Danierhan, S.; Abudu, S.; Donghai, G. Coupled GSI-SVAT model with groundwater-surface water interaction in the riparian zone of Tarim River. J. Hydrol. Eng. 2013, 18, 1211–1218. [Google Scholar] [CrossRef]
- Chen, Y.B.; Hu, S.J.; Zhu, H.; Luo, G. Soil evaporation of community in the southern Gurbantunggut Desert. J. Desert Res. 2016, 36, 190–198. [Google Scholar]
- Zhang, X.J.; Wang, Z.M.; Guo, W.Z.; Liang, L.I.; Ning, L.I.; Xue, X.Z. Influences of different treatments on soil evaporation after irrigation. Bull. Soil Water Conserv. 2014, 34, 74–78. [Google Scholar]
- Li, Y.; Liu, H.J.; Huang, G.H. Modeling resistance of soil evaporation and soil evaporation under straw mulching. Trans. Chin. Soc. Agric. Eng. 2015, 31, 98–106. [Google Scholar]
- Lei, H.; Yang, D. Combining the crop coefficient of winter wheat and summer maize with a remotely sensed vegetation index for estimating evapotranspiration in the North China Plain. J. Hydrol. Eng. 2014, 19, 243–251. [Google Scholar] [CrossRef]
- Cai, Y.K.; Li, Y.; Feng, H. Effects of gravel-sand mulching degree and size on soil moisture evaporation. J. Soil Water Conserv. 2014, 28, 273–277. [Google Scholar]
- Peng, L.; Xiao, H.L.; Lu, J.L.; Zhou, M.X.; Xie, Z.K.; Li, C.Z.; Zhao, L.J.; Chai, S.X.; Ren, J. Soil profile structure and moisture character of gravel-sand mulched field in arid and semiarid area of China. J. Desert Res. 2012, 32, 698–704. [Google Scholar]
- Li, X.Y.; Gong, J.D.; Gao, Q.Z.; Wei, X.H. Rainfall interception loss by pebble mulch in the semiarid region of China. J. Hydrol. 2000, 228, 165–173. [Google Scholar]
- Edgar, E.P. Evaporation from a thin layer of wet sand. Geophys. Res. Lett. 2008, 35, 307–315. [Google Scholar]
- Pérez, F.L. The influence of surface volcaniclastic layers from Haleakala (Maui, Hawaii) on soil water conservation. Catena 2000, 38, 301–332. [Google Scholar] [CrossRef]
- Zhuang, S.; Yin, B.; Zhu, Z. A simulation study on effect of surface film-forming material on water evaporation. PEDOSPHERE 2001, 11, 67–72. [Google Scholar]
- Wang, X. Vapor flow resistance of dry soil layer to soil water evaporation in arid environment: An overview. Water 2015, 7, 4552–4574. [Google Scholar] [CrossRef]
- Fan, Y.W.; Zhao, W.J.; Wang, Y.; Bi, G.Q. Improvement and verification of the Green-Ampt model for sand-layered soil. Trans. Chin. Soc. Agric. Eng. 2015, 31, 93–99. [Google Scholar]
- Shi, W.J.; Shen, B.; Wang, Z.R.; Zhang, J.F. Water and salt transport in sand-layered soil under evaporation with the shallow underground water table. Trans. Chin. Soc. Agric. Eng. 2005, 21, 23–26. [Google Scholar]
- Vanapalli, S.K.; Adem, H.H. A simple modeling approach for estimation of soil deformation behaviour of natural expansive soils using the modulus of elasticity as a tool. Poromechanics V 2013. [Google Scholar] [CrossRef]
- Benson, C.H.; Bohnhoff, G.L.; Ogorzalek, A.S.; Shackelford, C.D.; Apiwantragoon, P.; Albright, W.H. Field data and model predictions for a monolithic alternative cover. Geo-Front. Cong. 2005, 1–16. [Google Scholar] [CrossRef]
- Song, R.Q.; Chu, G.X.; Zhang, R.X.; Bai, L.; Yang, J.S. Effects of sand mulching on soil infiltration, evaporation, and salt distribution. Acta Pedol. Sin. 2012, 49, 282–288. [Google Scholar]
- Wilson, G.W.; Fredlund, D.G.; Barbour, S.L. Coupled soil-atmosphere modeling for soil evaporation. Can. Geotech. J. 1994, 31, 151–161. [Google Scholar] [CrossRef]
- Wilson, G.W. Soil Evaporative Fluxes for Geotechnical Engineering Problems. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 1990. [Google Scholar]
- Edlefsen, N.E.; Anderson, A.B.C. Thermodynamics of soil moisture. Hilgardia 1943, 15, 31–298. [Google Scholar] [CrossRef]
- Yuan, C.P.; Lei, T.W.; Mao, L.; Han, L.; Yang, W. Soil surface evaporation processes under mulches of different sized gravel. Catena 2009, 78, 117–121. [Google Scholar] [CrossRef]
- Qiu, Y.; Xie, Z.; Wang, Y.; Ren, J.; Malhi, S.S. Influence of gravel mulch stratum thickness and gravel grain size on evaporation resistance. J. Hydrol. 2014, 519, 1908–1913. [Google Scholar] [CrossRef]
- Govers, G.; Vandaele, K.; Desmet, R.P.; Poesen, J.; Bonte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 1994, 45, 469–478. [Google Scholar] [CrossRef]
- Modaihsh, A.S.; Horton, R.; Kirkham, D. Soil water evaporation suppression by sand mulches. Soil Sci. 1985, 139, 357–361. [Google Scholar] [CrossRef]
Soil Texture | Particle Size Distribution (%) | Field Capacity (m3/m3) | Residual Volume Moisture Content (m3/m3) | Hydraulic Conductivity (m/day) | |||||
---|---|---|---|---|---|---|---|---|---|
2.0–1.0 mm | 1.0–0.5 mm | 0.5–0.2 mm | 0.2–0.02 mm | 0.02–0.002 mm | <0.002 mm | ||||
Clay loam | 0.07 | 0.38 | 2.54 | 36.99 | 39.16 | 20.86 | 0.3636 | 0.028 | 0.04 |
Sand | 10.17 | 16.58 | 73.25 | - | - | - | 0.1532 | 0.017 | 17.856 |
Sand Mulching (cm) | Fitting Equations | Determination Oefficient (R2) | |
---|---|---|---|
CK | measured values | Y = 17.336ln(X) + 9.3423 (1 ≤ X ≤ 20) | 0.9968 |
simulated values | Y = 17.612ln(X) + 5.9751 (1 ≤ X ≤ 20) | 0.9861 | |
1.7 | measured values | Y = 0.9182 X + 0.2321 (1 ≤ X ≤ 20) | 0.9994 |
simulated values | Y = 0.9429 X + 0.3334 (1 ≤ X ≤ 20) | 1 | |
3.6 | measured values | Y = 0.2818 X + 0.6786 (1 ≤ X ≤ 20) | 0.9999 |
simulated values | Y = 0.2814 X + 0.8184 (1 ≤ X ≤ 20) | 0.9999 | |
5.7 | measured values | Y = 0.185 X + 0.5465 (1 ≤ X ≤ 20) | 1 |
simulated values | Y = 0.1724 X + 1.1366 (1 ≤ X ≤ 20) | 0.9953 |
Sand Inclusion Treatment | Fitting Equations | Determination Coefficient (R2) | Sand Inclusion Treatment | Fitting Equations | Determination Coefficient (R2) | ||
---|---|---|---|---|---|---|---|
Sand Thickness | Sand Layer | Sand Thickness | Sand Layer | ||||
1 cm | 0 cm | Y = 2.7503X + 0.1684 | 1 | 2 cm | 0 cm | Y = 0.8339X + 0.3918 | 1 |
5 cm | Y = 4.5307ln(X) + 8.6873 | 0.9899 | 5 cm | Y = 3.9044ln(X) + 9.3992 | 0.9987 | ||
10 cm | Y = 7.2833ln(X) + 10.643 | 0.9986 | 10 cm | Y = 7.0774ln(X) + 10.672 | 0.9984 | ||
15 cm | Y = 10.04ln(X) + 10.565 | 0.9992 | 15 cm | Y = 9.9055ln(X) + 10.653 | 0.9990 | ||
1.3 cm | 0 cm | Y = 1.3842X + 0.2598 | 1 | 3 cm | 0 cm | Y = 0.3772X + 0.611 | 1 |
5 cm | Y = 4.3125ln(X) + 8.9165 | 0.9948 | 5 cm | Y = 3.6174ln(X) + 9.8299 | 0.9926 | ||
10 cm | Y = 7.2352ln(X) + 10.656 | 0.9985 | 10 cm | Y = 7.197ln(X) + 10.719 | 0.9983 | ||
15 cm | Y = 9.9755ln(X) + 10.597 | 0.9991 | 15 cm | Y = 9.8946ln(X) + 10.699 | 0.9989 | ||
1.5 cm | 0 cm | Y = 1.1306X + 0.2976 | 1 | 5 cm | 0 cm | Y = 0.1881X + 1.0383 | 0.9987 |
5 cm | Y = 4.1757ln(X) + 9.0677 | 0.9971 | 5 cm | Y = 3.3917ln(X) + 10.288 | 0.9777 | ||
10 cm | Y = 7.217ln(X) + 10.661 | 0.9985 | 10 cm | Y = 7.2355ln(X) + 10.802 | 0.9980 | ||
15 cm | Y = 9.9481ln(X) + 10.618 | 0.9991 | 15 cm | Y = 9.9159ln(X) + 10.800 | 0.9987 | ||
1.7 cm | 0 cm | Y = 0.9429X + 0.3334 | 1 | Note: 1 ≤ X ≤ 20 | |||
5 cm | Y = 4.0563ln(X) + 9.21 | 0.9984 | |||||
10 cm | Y = 7.2028ln(X) + 10.669 | 0.9985 | |||||
15 cm | Y = 9.9274ln(X) + 10.631 | 0.9991 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Yu, P.; Ma, X.; Sheng, J.; Zhou, C. Numerical Simulation of Soil Evaporation with Sand Mulching and Inclusion. Water 2017, 9, 294. https://doi.org/10.3390/w9040294
Zhao W, Yu P, Ma X, Sheng J, Zhou C. Numerical Simulation of Soil Evaporation with Sand Mulching and Inclusion. Water. 2017; 9(4):294. https://doi.org/10.3390/w9040294
Chicago/Turabian StyleZhao, Wenju, Ping Yu, Xiaoyi Ma, Jie Sheng, and Changquan Zhou. 2017. "Numerical Simulation of Soil Evaporation with Sand Mulching and Inclusion" Water 9, no. 4: 294. https://doi.org/10.3390/w9040294
APA StyleZhao, W., Yu, P., Ma, X., Sheng, J., & Zhou, C. (2017). Numerical Simulation of Soil Evaporation with Sand Mulching and Inclusion. Water, 9(4), 294. https://doi.org/10.3390/w9040294