Effects of Precipitation and Topography on Total Phosphorus Loss from Purple Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Devices
2.2. Experimental Materials
2.3. Experimental Methods
2.4. Data
3. Results
3.1. The Effects of Rainfall Amount on TP
3.1.1. The Effects of Rainfall Amount on TP Load
3.1.2. The Effects of Rainfall Amount on TP Concentration
3.2. The Effects of Precipitation Intensity
3.2.1. The Effects of Precipitation Intensity on TP Load
3.2.2. The Effects of Precipitation Intensity on TP Concentration
3.3. The Effects of Gradient
3.3.1. The Effects of Gradient on TP Load
3.3.2. The Effects of Gradient on TP Concentration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Morales, N.; Boehler, M.A.; Buettner, S.; Liebi, C.; Siegrist, H. Recovery of N and P from Urine by Struvite Precipitation Followed by Combined Stripping with Digester Sludge Liquid at Full Scale. Water 2013, 5, 1262–1278. [Google Scholar] [CrossRef]
- Orlowski, N.; Lauer, F.; Kraft, P.; Frede, H.-G.; Breuer, L. Linking Spatial Patterns of Groundwater Table Dynamics and Streamflow Generation Processes in a Small Developed Catchment. Water 2014, 6, 3085–3117. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yang, S.T.; Zhao, C.S.; Bai, J.; Lou, H.Z.; Chen, K.; Wu, L.N.; Dong, G.T.; Zhou, Q.W. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China. Water 2016, 8, 505. [Google Scholar] [CrossRef]
- Piniewski, M.; Marcinkowski, P.; Kardel, I.; Giełczewski, M.; Izydorczyk, K.; Frątczak, W. Spatial Quantification of Non-Point Source Pollution in a Meso-Scale Catchment for an Assessment of Buffer Zones Efficiency. Water 2015, 7, 1889–1920. [Google Scholar] [CrossRef]
- Alvarez, S.; Asci, S.; Vorotnikova, E. Valuing the Potential Benefits of Water Quality Improvements in Watersheds Affected by Non-Point Source Pollution. Water 2016, 8, 112. [Google Scholar] [CrossRef]
- Motsinger, J.; Kalita, P.; Bhattarai, R. Analysis of Best Management Practices Implementation on Water Quality Using the Soil and Water Assessment Tool. Water 2016, 8, 145. [Google Scholar] [CrossRef]
- Yang, S.T.; Dong, G.T.; Zheng, D.H.; Xiao, H.L.; Gao, Y.F.; Lang, Y. Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China. Ecol. Model. 2011, 222, 3701–3717. [Google Scholar] [CrossRef]
- Buchanan, B.; Easton, Z.M.; Schneider, R.L.; Walter, M.T. Modeling the hydrologic effects of roadside ditch networks on receiving waters. J. Hydrol. 2013, 486, 293–305. [Google Scholar] [CrossRef]
- Wesström, I.; Joel, A.; Messing, I. Controlled drainage and subirrigation—A water management option to reduce non-point source pollution from agricultural land. Agric. Ecosyst. Environ. 2014, 198, 74–82. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S. Modeling hydrologic processes and NPS pollution in a small watershed in subhumid subtropics using swat. J. Hydrol. Eng. 2012, 17, 445–454. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, X.L.; Zhang, W.; Wu, X.; Zhang, J.; Han, F. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events. Environ. Pollut. 2016, 215, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.Z.; Wang, H.Z.; Ban, X.; Yin, X.A. An exploratory analysis of ecological water requirements of macroinvertebrates in the Wuhan branch of the Yangtze River. Quat. Int. 2015, 380, 256–261. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, H.Q. A comprehensive study of agricultural drought resistance and background drought levels in five main grain-producing regions of China. Sustainability 2016, 8, 346. [Google Scholar] [CrossRef]
- Zhong, X.H.; Cheng, G.W.; Li, Y. A study of forest hydrologic effect in the Sichuan basin region of the upper reaches of the Yangtze River. Arch. Agron. Soil Sci. 2010, 48, 319–327. [Google Scholar]
- Lou, H.Z.; Yang, S.T.; Zhao, C.S.; Zhou, Q.W.; Bai, J.; Hao, F.H.; Wu, L.N. Phosphorus risk in an intensive agricultural area in a mid-high latitude region of china. Catena 2015, 127, 46–55. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, M. Texture Statistics for Sichuan Basin Terrain Morphology Analysis DEM Based. In Proceedings of the International Conference on Machine Vision and Human-Machine Interface, Luoyang, China, 24–25 April 2010; pp. 319–322. [Google Scholar]
- Niu, J.; Zhang, P.C.; Xing, M.X. Characteristics of soil and water loss on purple slope farmland and its control in upper reaches of the Yangtze River. Sci. Soil Water Conserv. 2010, 8, 64–68. (In Chinese) [Google Scholar]
- Wang, B.; Zheng, F.; Römkens, M.J.M.; Darboux, F. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology 2013, 187, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wang, Y.; Li, F.C. Soil organic carbon and nitrogen losses due to soil erosion and cropping in a sloping terrace landscape. Soil Res. 2015, 53, 87–96. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, B.; Yu, G.R.; Chen, W.L.; He, N.P.; Wang, T.; Miao, C.Y. Coupled effects of biogeochemical and hydrological processes on C, N, and P export during extreme rainfall events in a purple soil watershed in southwestern China. J. Hydrol. 2014, 511, 692–702. [Google Scholar] [CrossRef]
- Sharma, R.; Bell, R.W.; Wong, M.T.F. Phosphorus forms in soil solution and leachate of contrasting soil profiles and their implications for P mobility. J. Soils Sediments 2015, 15, 854–862. [Google Scholar] [CrossRef]
- Kollongei, K.J.; Lorentz, S.A. Modelling hydrological processes, crop yields and NPS pollution in a small sub-tropical catchment in South Africa using ACRU-NPS. Hydrol. Sci. J. 2015, 60, 2003–2028. [Google Scholar] [CrossRef]
- Nie, X.J.; Zhang, J.H.; Gao, H. Soil enzyme activities on eroded slopes in the Sichuan Basin, China. Pedosphere 2015, 25, 489–500. [Google Scholar] [CrossRef]
- Ding, X.W.; Shen, Z.Y.; Liu, R.M.; Chen, L.; Lin, M. Effects of ecological factors and human activities on nonpoint source pollution in the upper reach of the Yangtze River and its management strategies. Hydrol. Earth Syst. Sci. Discuss. 2013, 11, 691–721. [Google Scholar] [CrossRef]
- Shin, M.H.; Won, C.H.; Jang, J.R.; Choi, Y.H.; Shin, Y.C.; Lim, K.J.; Choi, J.D. Effect of surface cover on the reduction of runoff and agricultural NPS pollution from upland fields. Paddy Water Environ. 2013, 11, 493–501. [Google Scholar] [CrossRef]
- Boluwade, A.; Madramootoo, C. Determining the influence of land use change and soil heterogeneities on discharge, sediment and phosphorus. J. Environ. Inform. 2014, 25, 126–135. [Google Scholar] [CrossRef]
- Wang, J.; Pant, H. Land use impact on bioavailable phosphorus in the Bronx River, New York. J. Environ. Prot. 2011, 2, 342–358. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Kleinman, P.J.; Heathwaite, A.L.; Gburek, W.J.; Folmar, G.J.; Schmidt, J.P. Phosphorus loss from an agricultural watershed as a function of storm size. J. Environ. Qual. 2008, 37, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhang, L.P.; Wang, W.Y.; Liu, Q. Effects of vegetation cover and slope length on nitrogen and phosphorus loss from a sloping land under simulated rainfall. Pol. J. Environ. Stud. 2014, 23, 835–843. [Google Scholar]
- Gao, Y.; Zhu, B.; Zhou, P.; Tang, J.L.; Wang, T.; Miao, C.Y. Effects of vegetation cover on phosphorus loss from a hillslope cropland of purple soil under simulated rainfall: A case study in China. Nutr. Cycl. Agroecosyst. 2009, 85, 263–273. [Google Scholar] [CrossRef]
- Volf, C.A.; Ontkean, G.R.; Bennett, D.R.; Chanasyk, D.S.; Miller, J.J. Phosphorus losses in simulated rainfall runoff from manured soils of Alberta. J. Environ. Qual. 2007, 36, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, P.; Zhao, X.N. Effects of rainfall intensity, underlying surface and slope gradient on Soil infiltration under simulated rainfall experiments. Catena 2013, 104, 93–102. [Google Scholar] [CrossRef]
- Herngren, L.F.; Goonetilleke, A.; Sukpum, R.; Silva, D.Y.D. Rainfall Simulation as a Tool for Urban Water Quality Research. Environ. Eng. Sci. 2005, 22, 378–383. [Google Scholar] [CrossRef]
- Zhang, J.H.; Su, Z.A.; Liu, G.C. Effects of terracing and agroforestry on soil and water loss in hilly areas of the Sichuan Basin, China. J. Mt. Sci. 2008, 5, 241–248. [Google Scholar] [CrossRef]
- Djebou, S.; Dagbegnon, C.; Singh, V.P. Impact of climate change on precipitation patterns: A comparative approach. Int. J. Climatol. 2016, 36, 10. [Google Scholar]
- Djebou, D.C.S.; Singh, V.P.; Frauenfeld, O.W. Analysis of watershed topography effects on summer precipitation variability in the southwestern United States. J. Hydrol. 2014, 511, 838–849. [Google Scholar] [CrossRef]
Percentage (Total) | Agricultural Land | Construction Land | Unused Land | |||
---|---|---|---|---|---|---|
Cultivated Field | Woodland | Grassland | Else | |||
100 | 29.66 | 45.98 | 4.03 | 9.01 | 10.88 | 0.44 |
Soil Layer (cm) | Unit Weight (g/cm3) | Initial Soil Moisture Rate (%) | Organic Matter (g/kg) | TP (g/kg) | pH |
---|---|---|---|---|---|
0–20 | 1.30 | 12.16 | 8.75 | 0.68 | 5.5 |
Precipitation Intensity (β) | 30 mm/h (β1) | 60 mm/h (β2) | 90 mm/h (β3) | 120 mm/h (β4) | |
---|---|---|---|---|---|
Gradient (α) | |||||
5° (α1) | α1β1 | α1β2 | α1β3 | α1β4 | |
10° (α2) | α2β1 | α2β2 | α2β3 | α2β4 | |
15° (α3) | α3β1 | α3β2 | α3β3 | α3β4 | |
20° (α4) | α4β1 | α4β2 | α4β3 | α4β4 | |
25° (α5) | α5β1 | α5β2 | α5β3 | α5β4 |
Gradient | Correlation | Correlation Coefficient |
---|---|---|
5° | y = 0.0805x − 0.4916 | 0.9956 |
10° | y = 0.0969x − 0.6441 | 0.9985 |
15° | y = 0.1253x − 0.5322 | 0.9940 |
20° | y = 0.1253x − 0.1895 | 0.9926 |
25° | y = 0.1282x − 0.4751 | 0.9983 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Xue, Y.; Lin, M.; Liu, Y. Effects of Precipitation and Topography on Total Phosphorus Loss from Purple Soil. Water 2017, 9, 315. https://doi.org/10.3390/w9050315
Ding X, Xue Y, Lin M, Liu Y. Effects of Precipitation and Topography on Total Phosphorus Loss from Purple Soil. Water. 2017; 9(5):315. https://doi.org/10.3390/w9050315
Chicago/Turabian StyleDing, Xiaowen, Ying Xue, Ming Lin, and Yuan Liu. 2017. "Effects of Precipitation and Topography on Total Phosphorus Loss from Purple Soil" Water 9, no. 5: 315. https://doi.org/10.3390/w9050315
APA StyleDing, X., Xue, Y., Lin, M., & Liu, Y. (2017). Effects of Precipitation and Topography on Total Phosphorus Loss from Purple Soil. Water, 9(5), 315. https://doi.org/10.3390/w9050315