Nutrient Leaching When Soil Is Part of Plant Growth Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Analyses for the Study
3. Results and Discussion
3.1. Soil Mix Composition
3.2. Infiltration, Bulk Density, Plant Growth
3.3. Compost Blanket Effect on Nutrient Leaching
3.4. Nitrate in Effluent as Affected by Soil
3.5. Total P in Effluent as Affected by Soil
4. Summary and Conclusions
Supplementary Materials
Conflicts of Interest
References
- Sims, T.J.; Simard, R.R.; Joern, B.C. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef]
- Wardynski, B.J.; Hunt, W.F. Are bioretention cells being installed per design standards in North Carolina? A field study. J. Environ. Eng. 2012, 138, 1210–1217. [Google Scholar] [CrossRef]
- Grebel, J.E.; Mohanty, S.K.; Torkelson, A.A.; Boehm, A.B.; Higgins, C.P.; Maxwell, R.M.; Nelson, K.L.; Sedlak, D.L. Engineered infiltration systems for urban stormwater reclamation. Environ. Eng. Sci. 2013, 30, 437–454. [Google Scholar] [CrossRef]
- Agrawal, S.G.; Kling, K.W.; Fischer, E.N.; Woner, D.N. PO43− removal by and permeability of industrial byproducts and minerals: Granulated blast furnace slag, cement kiln dust, coconut shell activated carbon, silica sand, and zeolite. Water Air Soil Pollut. 2011, 219, 91–101. [Google Scholar] [CrossRef]
- Stoner, D.; Penn, C.; McGrath, J.; Warren, J. Phosphorus removal with by products in a flow-through setting. J. Environ. Qual. 2012, 41, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, S.D.; Sauer, P. Iron filings cement engineered soil mix. Agron. J. 2016, 108, 1753–1757. [Google Scholar] [CrossRef]
- Hunt, W.F.; Davis, A.P.; Traver, R.G. Meeting hydrologic and water quality goals through targeted bioretention design. J. Environ. Eng. 2012, 138, 698–707. [Google Scholar] [CrossRef]
- Li, J.; Davis, A.P. A unified look at phosphorus treatment using bioretention. Water Res. 2016, 90, 141–155. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Marschner, P. Addition of fine-textured soil to compost to reduce nutrient leaching in a sandy soil. Soil Res. 2013, 51, 232–239. [Google Scholar] [CrossRef]
- Moharami, S.; Jalali, M. Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents. Environ. Monit. Assess. 2014, 186, 6565–6576. [Google Scholar] [CrossRef] [PubMed]
- Devau, N.; Hinsinger, P.; Le Cadre, E.; Colomb, B.; Gerard, F. Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim. Cosmochim. Acta 2011, 75, 2980–2996. [Google Scholar] [CrossRef]
- Gérard, F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.J.; Owen, J.S.; Li, J.; Evanylo, G. Assessment of selected bioretention blends for nutrient retention using mesocosm experiments. J. Environ. Qual. 2014, 43, 1754–1763. [Google Scholar] [CrossRef] [PubMed]
- Van Kessel, C.; Pennock, D.J.; Farrell, R.E. Seasonal variations in denitrification and nitrous oxide evolution at the landscape scale. Soil Sci. Soc. Am. J. 1993, 57, 988–995. [Google Scholar] [CrossRef]
- Groffman, P.M.; Crawford, M.K. Denitrification potential in urban riparian zones. J. Environ. Qual. 2003, 32, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Pitt, R. Storm-water filter media pollutant retention under aerobic versus anaerobic conditions. J. Environ. Eng. 2009, 135, 367–371. [Google Scholar] [CrossRef]
- Hefting, M.M.; Clement, J.-C.; Bienkowski, P.; Dowrick, D.; Guenat, C.; Butturnini, A.; Topa, S.; Pinay, G.; Verhoeven, J.T.A. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecol. Eng. 2005, 24, 465–482. [Google Scholar] [CrossRef]
- Henderson, C.; Greenway, M.; Phillips, I. Removal of dissolved nitrogen, phosphorus and carbon from stormwater by bioinfiltration mesocosms. Water Sci. Technol. 2007, 55, 183–191. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Sauer, P. Nutrient leaching when compost as part of plant growth media. Compost Sci. Util. 2016, 24, 238–245. [Google Scholar] [CrossRef]
- United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS). Soil Survey. Official Soil Series Descriptions; 2014. Available online: http://www.nrcs.usda.gov/ (accessed on 1 August 2014).
- Ankeny, M.D.; Kaspar, T.C.; Horton, R. Characterization of tillage and traffic effects on unconfined infiltration measurements. Soil Sci. Soc. Am. J. 1990, 43, 837–840. [Google Scholar] [CrossRef]
- Prieksat, M.A.; Ankeny, M.D.; Kaspar, T.C. Design for an automated, self-regulating, single-ring infiltrometer. Soil Sci. Soc. Am. J. 1992, 56, 1409–1411. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielsen, D.R., Eds.; Soil Science Society of America (SSSA): Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Wood, E.D.; Armstrong, F.A.J.; Richards, F.A. Determination of nitrate in seawater by cadmium-copper reducton to nitrite. J. Mar. Biol. Assoc. UK 1967, 47, 23–31. [Google Scholar] [CrossRef]
- Tomer, M.D.; Moorman, T.B.; Rossi, C.G. Assessment of the Iowa River’s South Fork watershed: Part 1. Water quality. J. Soil Water Conserv. 2008, 63, 360–370. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Method 365.1, Revision 2.0: Determination of Phosphorus by Semi-Automated Colorimetry; United States Environmental Protection Agency: Cinncinnati, OH, USA, 1993. Available online: https://www.epa.gov/sites/production/files/2015-08/documents/method_365-1_1993.pdf (accessed on 2 March 2017).
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Maguire, R.O.; Sims, J.T. Soil testing to predict phosphorus leaching. J. Environ. Qual. 2002, 31, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, P.J.A.; Sharpley, A.N. Estimating soil phosphorus sorption saturation from Mehlich-3 data. Commun. Soil Sci. Plant Anal. 2002, 33, 1825–1839. [Google Scholar] [CrossRef]
- Ige, D.V.; Akinremi, O.O.; Flaten, D.N. Environmental index for estimating the risk of phosphorus loss in calcareous soils of Manitoba. J. Environ. Qual. 2005, 34, 1944–1951. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, T.Q.; O’Halloran, I.P.; Hu, Q.C.; Tan, C.S.; Speranzini, D.; Macdonald, I.; Patterson, G. Agronomic and environmental soil phosphorus test for predicting potential phosphorus loss from Ontario Soils. Geoderma 2015, 241–242, 51–58. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Davis, A.P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef]
- Bratieres, K.; Fletcher, T.D.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.L.; Mallarino, A.P.; Lore, J.F.; Baker, J.L.; Haq, M.U. Phosphorus lateral movement through subsoil to subsurface tile drains. Soil Sci. Soc. Am. J. 2012, 76, 710–717. [Google Scholar] [CrossRef]
Soil | Fe-DTPA 1 | PM3 | AlM3 | FeM3 | CaM3 | OC 1 | IC 1 | NO3 | NH4 | Sand | Clay | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
g/100 g | g/g | g/g | ||||||||||
Storden | 11 | 1.9 | 65.1 | 6.9 | 367 | 1.28 | 0.25 | 11.9 | 2.6 | 0.51 | 0.20 | 6.9 |
Sac | 44 | 2.7 | 92.8 | 13.6 | 425 | 1.95 | 34.6 | 9.0 | 0.03 | 0.37 | 6.4 | |
Killduff | 71 | 13.6 | 64.5 | 29.6 | 368 | 2.38 | 16.7 | 4.5 | 0.02 | 0.40 | 6.9 | |
Harps | 32 | 4.6 | 9.1 | 15.1 | 1185 | 2.77 | 1.89 | 20.0 | 4.4 | 0.29 | 0.35 | 7.3 |
Soil Mix | Fe-DTPA 1 | PM3 1 | PM3/(AlM3 + FeM3) | PM3/CaM3 | OC 1 | TN 1 | NO3 | NH4 |
---|---|---|---|---|---|---|---|---|
mg/kg | mg/kg | g/100 g | g/100 g | mg/kg | mg/kg | |||
Storden | 22c 2 | 1.2b | 0.049b | 0.0033b | 0.76a | 0.06a | 14a | 0.72c |
Sac | 26b | 1.1b | 0.044b | 0.0034b | 0.77a | 0.06a | 13a | 1.26a |
Killduff | 29a | 2.2a | 0.090a | 0.0064a | 0.81a | 0.06a | 12a | 0.81b |
Harps | 25bc | 1.3b | 0.074a | 0.0031b | 0.84a | 0.07a | 11a | 0.81b |
Compost Blanket | Fe-DTPA 1 | PM3 1 | PM3/(AlM3 + FeM3) | PM3/CaM3 | OC 1 | TN 1 | NO3 | NH4 |
---|---|---|---|---|---|---|---|---|
mg/kg | mg/kg | g/100 g | g/100 g | mg/kg | mg/kg | |||
No | 25b 2 | 1.1b | 0.051b | 0.0033b | 0.67b | 0.06b | 2.9b | 0.87a |
Yes | 27a | 1.7a | 0.077a | 0.0048a | 0.92a | 0.07a | 21.8a | 0.92a |
Soil Mix | Pre NO3sat | Pre NO3unsat | Pre NO3 Load | Post NO3sat | Post NO3 Unsat | Post NO3 Load |
---|---|---|---|---|---|---|
mg/L | mg/L | mg | mg/L | mg/L | mg | |
Storden | 15b 1 | 26a | 28a | 221ab | 70a | 253ab |
Sac | 68a | 36a | 55a | 263a | 79a | 270a |
Killduff | 46ab | 17a | 42a | 159bc | 63a | 190ab |
Harps | 64ab | 41a | 65a | 114c | 75a | 128b |
Soil Mix | Pre Plant TPsat | Pre Plant TPunsat | Pre Plant P Load | Post Harvest TPsat | Post Harvest TPunsat | Post Harvest P Load |
---|---|---|---|---|---|---|
mg/L | mg/L | mg | mg/L | mg/L | mg | |
Storden | 0.24a 1 | 0.71a | 0.64a | 0.08b | 0.05b | 0.11b |
Sac | 0.09a | 0.40b | 0.23b | 0.09b | 0.07b | 0.11b |
Killduff | 0.10a | 0.09c | 0.13b | 0.41a | 0.37a | 0.58a |
Harps | 0.10a | 0.10c | 0.12b | 0.07b | 0.07b | 0.09b |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logsdon, S.D. Nutrient Leaching When Soil Is Part of Plant Growth Media. Water 2017, 9, 501. https://doi.org/10.3390/w9070501
Logsdon SD. Nutrient Leaching When Soil Is Part of Plant Growth Media. Water. 2017; 9(7):501. https://doi.org/10.3390/w9070501
Chicago/Turabian StyleLogsdon, Sally D. 2017. "Nutrient Leaching When Soil Is Part of Plant Growth Media" Water 9, no. 7: 501. https://doi.org/10.3390/w9070501
APA StyleLogsdon, S. D. (2017). Nutrient Leaching When Soil Is Part of Plant Growth Media. Water, 9(7), 501. https://doi.org/10.3390/w9070501