A Review of Phosphorus Removal Structures: How to Assess and Compare Their Performance
Abstract
:1. Purpose and Justification for Phosphorus Removal Structures
2. How Phosphorus Removal Structures Operate
- It contains a sufficient mass of an unconsolidated P sorption material (PSMs). PSMs are usually industrial by-products or manufactured materials—although some occur naturally—characterized by a capacity to strongly sorb P.
- The PSM is contained and placed in a hydrologically active area that receives and/or exhibits dissolved P concentrations greater than 0.2 mg L−1.
- High dissolved P water is able to flow through the contained PSM at a suitable flow rate.
- The PSM can be removed and replaced after it is no longer effective at removing P at the minimum desired rate.
3. Designing P Removal Structures
4. Evaluation of PSMs and P Removal Structures
4.1. Influence of Inflow P Concentration and Retention Time
4.2. Normalizing P Removal
5. Performance of Previously Constructed P Removal Structures
6. Feasibility and Economics
7. Summary and Conclusions
Author Contributions
Conflicts of Interest
References
- Scavia, D.; Allan, J.D.; Arend, K.K.; Bartell, S.; Beletsky, D.; Bosch, N.S.; Brandt, S.B.; Briland, R.D.; Daloğlu, I.; DePinto, J.V.; et al. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J. Gt. Lakes Res. 2014, 40, 226–246. [Google Scholar] [CrossRef]
- Lehmann, J.; Lan, Z.; Hyland, C.; Sato, S.; Solomon, D.; Ketterings, Q.M. Long-Term dynamics of phosphorus forms and retention in manure-amended soils. Environ. Sci. Technol. 2005, 39, 6672–6680. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.A.; Kleinman, P.J.A.; Sharpley, A.N.; Turner, B.L. Relating soil phosphorus to dissolved phosphorus in runoff: A single extraction coefficient for water quality modeling. J. Environ. Qual. 2005, 34, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; King, K.W.; Fausey, N.R. Drainage water management effects on tile discharge and water quality. Agric. Water Manag. 2015, 148, 43–51. [Google Scholar] [CrossRef]
- Ross, J.A.; Herbert, M.E.; Sowa, S.P.; Frankenberger, J.R.; King, K.W.; Christopher, S.F.; Tank, J.L.; Arnold, J.G.; White, M.J.; Yen, H. A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management. Agric. Water Manag. 2016, 178, 366–376. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Chapra, S.C.; Wedepohl, R.; Sims, J.T.; Daniel, T.C.; Reddy, K.R. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- Withers, P.J.; Davidson, I.A.; Foy, R.H. Prospects for controlling nonpoint phosphorus loss to water: A UK perspective. J. Environ. Qual. 2000, 29, 167–175. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development (OECD). Water quality: Nitrates, phosphorus and pesticides. In OECD Compend. of Agri-Environ. Indic; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef]
- Fiorellino, N.; Kratochvil, R.; Coale, F. Long-term agronomic drawdown of soil phosphorus in Mid-Atlantic coastal plain soils. Agron. J. 2017, 109, 1–7. [Google Scholar] [CrossRef]
- Gotcher, M.J.; Zhang, H.; Schroder, J.L.; Payton, M.E. Phytoremediation of soil phosphorus with crabgrass. Agron. J. 2014, 106, 528–536. [Google Scholar] [CrossRef]
- Penn, C.J.; Bowen, J.M. Design and Construction of Phosphorus Removal Structures for Improving Water Quality, 1st ed.; Springer International Publishing: Gewerbestrasse, Switzerland, 2018; p. 228. ISBN 978-3-319-58657-1. [Google Scholar]
- Penn, C.J.; McGrath, J.M.; Rounds, E.; Fox, G.; Heeren, D. Trapping phosphorus in runoff with a phosphorus removal structure. J. Environ. Qual. 2012, 41, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.J.; McGrath, J.M.; Bowen, J.; Wilson, S. Phosphorus removal structures: A management option for legacy phosphorus. J. Soil Water Conserv. 2014, 69, 51A–56A. [Google Scholar] [CrossRef]
- Shilton, A.; Elmetri, I.; Drizo, A.; Pratt, S.; Haverkamp, R.G.; Bilby, S.C. Phosphorus removal by an ‘active’ slag filter—A decade of full scale experience. Water Res. 2006, 40, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Dobbie, K.E.; Heal, K.V.; Aumônier, J.; Smith, K.A.; Johnston, A.; Younger, P.L. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater. Chemosphere 2009, 75, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, D.J.; Tanner, C.C. Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review. N. Z. J. Agric. Res. 2010, 53, 71–95. [Google Scholar] [CrossRef]
- Arias, C.A.; Brix, H.; Johansen, N.-H. Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter. Water Sci. Technol. 2003, 48, 51–58. [Google Scholar] [PubMed]
- Weber, D.; Drizo, A.; Twowig, E.; Bird, S.; Ross, D.A. Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters. Water Sci. Technol. 2007, 56, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F. Reducing phosphorus loading of surface water using iron-coated sand. J. Environ. Qual. 2013, 42, 250–259. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.W.; Sharpley, A.N.; Bourke, W. Treatment of drainage water with industrial by-products to prevent phosphorus loss from tile-drained land. J. Environ. Qual. 2008, 37, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.; Bowen, J.; McGrath, J.; Nairn, R.; Fox, G.; Brown, G.; Wilson, S.; Gill, C. Evaluation of a universal flow-through model for predicting and designing phosphorus removal structures. Chemosphere 2016, 151, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Klimeski, A.; Uusitalo, R.; Turtola, E. Variations in phosphorus retention by a solid material while scaling up its application. Environ. Technol. Innov. 2015, 4, 285–298. [Google Scholar] [CrossRef]
- Kirkkala, T.; Ventelä, A.-M.; Tarvainen, M. Long-term field-scale experiment on using lime filters in an agricultural catchment. J. Environ. Qual. 2012, 41, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Davis, A.P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention. Environ. Sci. Technol. 2014, 48, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Chavez, R.A.; Brown, G.O.; Coffman, R.R.; Storm, D.E. Design, construction, and lessons learned from Oklahoma bioretention cell demonstration project. Appl. Eng. Agric. 2015, 31, 63–71. [Google Scholar] [CrossRef]
- Feyereisen, G.W.; Francesconi, W.; Smith, D.R.; Papiernik, S.K.; Krueger, E.S.; Wente, C.D. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses. J. Environ. Qual. 2015, 44. [Google Scholar] [CrossRef] [PubMed]
- Lyngsie, G.; Penn, C.J.; Hansen, H.C.B.; Borggaard, O.K. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry. J. Environ. Manag. 2014, 143, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Bus, A. Testing of reactive materials for phosphorus removal from water and wastewater—Comparative study. Ann. Warsaw Univ. Life Sci. SGGQ Land Reclam. 2014, 46, 57–67. [Google Scholar] [CrossRef]
- Eveborn, D.; Gustafsson, J.P.; Hesterberg, D.; Hillier, S. XANES speciation of P in environmental samples: An assessment of filter media for on-Site wastewater treatment. Environ. Sci. Technol. 2009, 43, 6515–6521. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.J.; Blowes, D.W.; Ptacek, C.J. Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ. Sci. Technol. 1998, 32, 2308–2316. [Google Scholar] [CrossRef]
- Johansson, L. Industrial by-products and natural substrata as phosphorus sorbents. Environ. Technol. 1999, 20, 309–316. [Google Scholar] [CrossRef]
- Vohla, C.; Kõiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands: A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Hedström, A. Reactive filter systems for small scale wastewater treatment: A literature review. Vatten 2006, 62, 253–263. [Google Scholar]
- Klimeski, A.; Chardon, W.J.; Turtola, E.; Uusitalo, R. Potential and limitations of phosphate retention media in water protection: A process-based review of laboratory and field-scale tests. Agric. Food Sci. 2012, 21, 206–223. [Google Scholar]
- Westholm, L.J. Substrates for phosphorus removal—Potential benefits for on-site wastewater treatment? Water Res. 2006, 40, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Stoner, D.; Penn, C.; McGrath, J.; Warren, J. Phosphorus removal with by-products in a flow-through setting. J. Environ. Qual. 2012, 41, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.J.; McGrath, J.M. Predicting phosphorus sorption onto steel slag using a flow-through approach with application to a pilot scale system. J. Water Resour. Prot. 2011, 3, 235–244. [Google Scholar] [CrossRef]
- Hill, C.M.; Duxbury, J.; Geohring, L.; Peck, T. Designing constructed wetlands to remove phosphorus from barnyard runoff: A comparison of four alternative substrates. J. Environ. Sci. Health 2000, A35, 1357–1375. [Google Scholar] [CrossRef]
- Pant, H.K.; Reddy, K.R.; Lemon, E. Phosphorus retention capacity of root bed media of sub-surface flow constructed wetlands. Ecol. Eng. 2001, 17, 345–355. [Google Scholar] [CrossRef]
- Forbes, M.G.; Dickson, K.R.; Golden, T.D.; Hudak, P.; Doyle, R.D. Dissolved phosphorus retention of light-weight expanded shale and masonry sands used in subsurface flow treatment wetlands. Environ. Sci. Technol. 2004, 38, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Kholoma, E.; Renman, G.; Renman, A. Phosphorus removal from wastewater by field-scale fortified filter beds during a one-year study. Environ. Technol. 2016, 37, 2953–2963. [Google Scholar] [CrossRef] [PubMed]
- Szögi, A.A.; Humenik, F.J.; Rice, J.M.; Hunt, P.G. Swine wastewater treatment by media filtration. J. Environ. Sci. Health 1997, B32, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Kinross, J.; Read, P.; Marland, A. The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems for waste treatment. Water Res. 2000, 34, 2183–2190. [Google Scholar] [CrossRef]
- Comeau, Y.; Brisson, J.; Réville, J.-P.; Forget, C.; Drizo, A. Phosphorus removal from trout farm effluents by constructed wetlands. Water Sci. Technol. 2001, 44, 55–60. [Google Scholar] [PubMed]
- Vohla, C.; Põldvere, E.; Noorvee, A.; Kuusemets, V.; Mander, Ü. Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland. J. Environ. Sci. Health 2005, A40, 1251–1264. [Google Scholar] [CrossRef]
- Søvik, A.K.; Kløve, B. Phosphorus retention processes in shell sand filter systems treating municipal wastewater. Ecol. Eng. 2005, 25, 168–182. [Google Scholar] [CrossRef]
- Ádám, K.; Søvik, A.K.; Krogstad, T. Sorption of phosphorus to Filtralite-PTM—The effect of different scales. Water Res. 2006, 40, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Renman, G. Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater. Water 2011, 3, 146–156. [Google Scholar] [CrossRef]
- Shilton, A.; Pratt, S.; Drizo, A.; Mahmood, B.; Banker, S.; Billings, L.; Glenny, S.; Luo, D. ‘Active’ filters for upgrading phosphorus removal from pond systems. Water Sci. Technol. 2005, 51, 111–116. [Google Scholar] [PubMed]
- Korkusuz, E.A.; Beklioğlu, M.; Demirer, G.N. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: Field application. Bioresour. Technol. 2007, 98, 2089–2101. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.; Drizo, A. EAF steel slag filters for phosphorus removal from milk parlor effluent: The effects of solids loading, alternate feeding regimes and in-series design. Water 2010, 2, 484–499. [Google Scholar] [CrossRef]
- Renman, A.; Renman, G. Long-term phosphate removal by the calcium-silicate material Polonite in wastewater filtration systems. Chemosphere 2010, 79, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Barca, C.; Troesch, S.; Meyer, D.; Drissen, P.; Andrès, Y.; Chazarenc, F. Steel Slag Filters to Upgrade Phosphorus Removal in Constructed Wetlands: Two Years of Field Experiments. Environ. Sci. Technol. 2013, 47, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.B.; McAtamney, C.F. Constructed wetlands for waste water treatment: The use of laterite in the bed medium in phosphorus and heavy metal removal. Hydrobiologia 1996, 340, 323–331. [Google Scholar] [CrossRef]
- Sibrell, P.L.; Kehler, T. Phosphorus removal from aquaculture effluents at the Northeast Fishery Center in Lamar, Pennsylvania using iron oxide sorption media. Aquac. Eng. 2016, 72–73, 45–52. [Google Scholar] [CrossRef]
- Penn, C.J.; Bryant, R.B.; Kleinman, P.J.A.; Allen, A.L. Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials. J. Soil Water Conserv. 2007, 62, 269–276. [Google Scholar]
- Faucette, B.; Cardoso, F.; Mulbry, W.; Millner, P. Performance of compost filtration practice for green infrastructure stormwater applications. Water Environ. Res. 2013, 85, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.B.; Buda, A.R.; Kleinman, J.A.; Church, C.D.; Saporito, L.S.; Folmar, G.J.; Bose, S.; Allen, A.L. Using flue gas desulfurization gypsum to remove dissolved phosphorus from agricultural drainage waters. J. Environ. Qual. 2012, 41, 664–671. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.W.; Hawke, M.; McIntosh, J.J. Assessment of a technique to remove phosphorus from streamflow. N. Z. J. Agric. Res. 2007, 50, 503–510. [Google Scholar] [CrossRef]
- Agrawal, S.G.; King, K.W.; Moore, J.F.; Levison, P.; McDonald, J. Use of industrial byproducts to filter phosphorus and pesticides in golf green drainage water. J. Environ. Qual. 2011, 40, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bell, G.E.; Penn, C.J.; Moss, J.Q.; Payton, M.E. Phosphorus reduction in turfgrass runoff using a steel slag trench filter system. J. Soil Water Conserv. 2015, 54, 1859–1867. [Google Scholar] [CrossRef]
- Lyngsie, G.; Penn, C.J.; Pedersen, H.L.; Borggaard, O.K.; Hansen, H.C. Modelling of phosphate retention by Ca- and Fe-rich filter materials under flow-through conditions. Ecol. Eng. 2015, 75, 93–102. [Google Scholar] [CrossRef]
- Klimeski, A.; Uusitalo, R.; Turtola, E. Screening of Ca- and Fe-rich materials for their applicability as phosphate-retaining filters. Ecol. Eng. 2014, 68, 143–154. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
Wastewater: Sand, Shale, or Soil | |||||||||
Study | Notes | PSM | Mass | Particle Size | Retention Time | Influent DP Concentration | Cumulative P Added | Cumulative P Removed | Cumulative P Removed |
(Kg) | (mm) | (mg L−1) | (mg kg−1) | (mg kg−1) | (%) | ||||
Hill et al. [38] | Artificial wetland for dairy barnyard runoff | Soil (fine loamy, mixed, mesic Glossic Hapludalf) | 53,625 | NA | 8 d | 14.2 | 92 | 52.5 | 52.7 |
Norlite, crushed and fired shale | 33,000 | NA | 7.5 d | 14.2 | 150 | 74 | 34 | ||
Pant et al. [39] | Constructed wetland with subsurface flow for wastewater | Queenston shale gravel | 47,700 | 2–64 | 4.2–8.4 d | 5.8–11.7 | 786 | 97 | 12 |
47,700 | 2–64 | 4.2–8.4 d | 3.3–6.7 | 720 | 92 | 13 | |||
Fonthill sand | 1560 | 0.0625–2 | 3–6 d | 2.8–5.5 | 1042 | 307 | 29 | ||
1560 | 0.0625–2 | 3–6 d | 0.9–1.8 | 693 | 3 | 0.4 | |||
Forbes et al. [40] | Pilot scale wetlands for wastewater | Expanded shale | 1400 | 0.72 | 17.3 h | 0.36–2.25 | 648 | 449 | 69.3 |
Masonry sand | 3220 | 0.11 | 10.6 h | 0.36–2.25 | 247 | 53.5 | 22.7 | ||
Kholoma et al. [41] | P filter for wastewater | Sand | 245 | 0.33–25 | 130–180 m | 6.4 | 23.7 | 4.5 | 19 |
Gas concrete (Sorbulite) and charcoal | 140 (Sorbulite) 97 (charcoal) | 0.5–20 | 120–150 m | 6.4 | 60 | 24 | 40 | ||
Sand and charcoal | 245 (Sorbulite) 97 (charcoal) | 0.33–25 | 120–150 m | 6.4 | 39 | 10 | 26 | ||
Wastewater: Ca-Rich Materials | |||||||||
Study | Notes | PSM | Mass | Particle Size | Retention Time | Influent DP Concentration | Cumulative P Added | Cumulative P Removed | Cumulative P Removed |
(Kg) | (mm) | (mg L−1) | (mg kg−1) | (mg kg−1) | (%) | ||||
Szögi et al. [42] | Bed filter for swine effluent | Marl | 1237 | 4.7–19 | 15.8 h | 82 | 71 | 36 | 37–52 |
Gray et al. [43] | Artificial wetland (pilot scale) for treating wastewater | Marl | 21 | NA | 5 d | 7 | 48 | 47.6 | 99 |
Hill et al. [38] | Artificial wetland for dairy barnyard runoff | Crushed limestone | 70,125 | 6–25 | 7.8 d | 14.2 | 70 | 14.4 | 4.3 |
Wollastonite and limestone | 39,188 | NA | 7 d | 14.2 | 126 | 40 | 9.5 | ||
Comeau et al. [44] | Pilot plant constructed wetland for trout farm effluent | Limestone: bed 1 | 148,500 | 2.5–5 | 31.2 h | 0.03–0.61 | 4.61 | 3.99 | 87 |
Limestone: bed 2 | 164,700 | 0–2.5 | 28.8 h | 0.02–0.08 | 0.54 | 0.2 | 37.5 | ||
Pant et al. [39] | Constructed wetland with subsurface flow for wastewater | Lockport dolomite | 45,300 | 0.0625–2 | 4–8 d | 1.6–3.2 | 218 | 35 | 16 |
Arias et al. [17] | Constructed wetland for wastewater | Calcite | 189 | 2 | 28–99 m | 7.3 | 13,904 | 3174 | 23 |
Vohla et al. [45] | Constructed subsurface wetland for wastewater | Calcareous sediment from oil-shale ash plateau | 1400 | 0.002–0.125 | 48 h | 6.94 | 11,743 | 656 | 5.6 |
Søvik and Klove [46] | Meso-scale filter for wastewater from single household | Shell sand (“Korall sand”) | 666 | 1 (pre-filter) 1 (main filter) | 4.4–10.5 d | 7.8 | 335 | 285 | 85 |
Ádám et al. [47] | Meso-scale wastewater treatment | Filtralite-P | 359 | 0–4 | 4.3 d | 6 | 526 | 521 | 99 |
Large-scale wastewater treatment | 99,000 | 0–4 | 17.7 d | 2.9 | 54 | 52 | 97 | ||
Karcmarczyk and Renman [48] | Subsurface constructed wetland for wastewater | Sand, Ca addition, scrap iron, bentonite, bark, straw | NA | 0.05–2 | 8.6 d | 8 | NA | 373 | 24–96 |
Shilton et al. [49] | Column field test for wastewater | Tararua limestone | 24 | NA | 12 h | 10 | 1344 | 968 | 72 |
Wastewater: Steel Slag | |||||||||
Study | Notes | PSM | Mass | Particle Size | Retention Time | Influent DP Concentration | Cumulative P Added | Cumulative P Removed | Cumulative P Removed |
(Kg) | (mm) | (mg L−1) | (mg kg−1) | (mg kg−1) | (%) | ||||
Shilton et al. [49] | Column field test for wastewater | Iron slag | 24 | NA | 12 h | 10 | 1168 | 210 | 18 |
Shilton et al. [14] | Confined bed for wastewater treatment | Steel slag | 17,773,695 | 10–20 | 72 h | 8.4 (total P) | 3400 | 1200 | 35 |
Korkusuz, et al. [50] | Vertical subsurface flow wetland for wastewater | Blast furnace slag | 9389 | 3 | 2.9 d | 4.6 | 493 | 248 | 50 |
Weber et al. [18] | P filter for wastewater connected to artificial wetland | Steel slag | 113 | 5–14 | 12–24 h | 29 | 2170 | 1700 | 75 |
Stand-alone P filter for wastewater | 113 | 5–14 | 12 h | 29 | 1900 | 1200 | 72 | ||
Bird and Drizo [51] | Constructed wetlands for milk parlor effluent. | EAF steel slag: after two feeding cycles | 829 | 5–20 | 18 h | 42.5 | 2100 | 1464 | 70 |
Renman and Renman [52] | Wastewater treatment | Polonite (Ca silicate) | 560 | 2–5.6 | 1–72 h | 4.9 | 613 | 545 | 89 |
Barca et al. [53] | Subsurface flow filter to treat wastewater effluent from constructed wetland | EAF steel slag | 10,800 | 20–40 | 17.5–23.8 h: then 48 h after 9 w | 7.8 | 925 | 320 | 37 |
BOF steel slag | 9600 | 20–40 | 19 h–25.7 h: then 48 h after 9 w | 7.8 | 1040 | 610 | 62 | ||
Wastewater: Mine Drainage Residuals (MDR) and Fe-Rich Materials | |||||||||
Study | Notes | PSM | Mass | Particle Size | Retention Time | Influent DP Concentration | Cumulative P Added | Cumulative P Removed | Cumulative P Removed |
(Kg) | (mm) | (mg L−1) | (mg kg−1) | (mg kg−1) | (%) | ||||
Wood and McAtamney [54] | Pilot-scale constructed wetland for landfill leachate | Laterite | 3000 | 2–3.5 | 8 d | 1.46 | 2.45 | 2.28 | 93 |
Dobbie et al. [15] | Wastewater treatment plant | MDR (granular) | Initially 2100, then 1075 after substitution with gravel | 0.002–5 | 26 m (theoretical) 12 m (measured) | 4 | 57,566 | 21,900 | 38 |
MDR (granular) | 505 | 6.4–9.5 | 16 m | 3–5 | 28,374 | 5970 | 21 | ||
Sibrell and Kehler [55] | Pilot scale P filter for trout farm effluent | Toby creek MDR: 12 h resting period | 11.2 | 0.85–6.3 | 1.95 m | 0.0315 | 3303 | 1585 | 48 |
Blue valley MDR: 12 resting period | 11.2 | 0.85–4 | 1.93 m | 0.03–0.26 | 3188 | 1689–1976 | 53–62 | ||
GFH (manufactured Fe oxide): 12 h resting period | 11.2 | 0.21–2 | 1.93 m | 0.03–0.26 | 3188 | 1881–2040 | 59–64 | ||
Blue valley MDR: regenerated after sorption cycle | 11.2 | 0.43–2 | 1.93 m | 0.12 | 3283 | 1871 | 57 | ||
GFH (manufactured Fe oxide): regenerated after sorption cycle | 12.2 | 0.21–2 | 1.93 m | 0.12 | 3283 | 1684 | 52 | ||
Non-Point Drainage: Non-Steel Slag Materials | |||||||||
Study | Notes | PSM | Mass | Particle Size | Retention Time | Influent DP Concentration | Cumulative P Added | Cumulative P Removed | Cumulative P Removed |
(Kg) | (mm) | (mg L−1) | (mg kg−1) | (mg kg−1) | (%) | ||||
Penn et al. [56] | Confined ditch filter for agricultural runoff | Mine drainage residuals | 200 | 0.35 (mean) | 0.7 m | 6–16 | 2727 | 2700 | 99 |
Faucette et al. [57] | Runoff socks for treating synthetic runoff | Compost | 7.2 | 0–25 | 0.87 s | 0.86 | 33 | 3.15 | 9.5 |
Compost and “natural sorbent” | 7.2 compost, 0.165 “natural sorbent” | 0–25 | 0.87 s | 0.86 | 33 | 11.5 | 35 | ||
Bryant et al. [58] | Drainage ditch filter for agricultural runoff | Flue gas desulfurization gypsum | 110,000 | 0.045 | 31 h | 1.21 | 66 | 23 | 35 |
Kirkkala et al. [23] | Filters for treating agriculture runoff | Spent lime and burnt lime | 2022 | 3 | 20 h | 2.6 | 4888 | 3031 | 62 |
Burnt lime | 58,500 | 3 | 25 h | 0.01 | 6 | 3.1 | 52 | ||
Burnt lime | 43,875 | 3 | 85 h | 0.003 | 7 | 3.22 | 46 | ||
Mixed lime | 43,875 | 3 | 71 h | 0.009 | 7 | 3.22 | 46 | ||
Groenenberg et al. [19] | Enveloped tile drain in agricultural field | Fe-coated sand | 9240 | NA | NA | 1.4–3.1 | 42–93 | 38–89 | 90–95 |
Liu and Davis [24] | Bio-retention cell that collects runoff from parking lot | Soil +5% WTRs | 7059 | NA | NA | 0.07 | 61 | 30.5 | 60 |
Klimeski et al. [22] | Ditch filter for agricultural runoff | Ca-Fe oxide granules (Sachtofer) | 7000 | 3–15 | 10–3000 m | 0.05–0.25 | 220 | 60 | 27 |
Penn et al. [21] | Ditch filter for agricultural runoff | Flue gas desulfurization gypsum | 58,297 | 0.04 | 1–3 h | 0.5 | 66 | 18 | 27 |
46,054 | 1.6 | 19 | 7 | 37 | |||||
48,969 | 1.3 | 148 | 22 | 15 | |||||
Non-Point Drainage: Steel Slag | |||||||||
Study | Notes | PSM | Mass | Particle Size | Retention Time | Influent DP Concentration | Cumulative P Added | Cumulative P Removed | Cumulative P Removed |
(Kg) | (mm) | (mg L−1) | (mg kg−1) | (mg kg−1) | (%) | ||||
McDowell et al. [59] | Filter “socks” placed in a stream bed | Steel slag | 1916 | 2–5 | 1.34 m | 0.024 | 3311 | 1456 | 44 |
McDowell et al. [20] | Enveloped tile drain and filter socks in agricultural field | Melter slag (no socks) | 72,000 | NA | NA | 0.33 | 60 | 36 | 60 |
Melter slag, with 10 kg socks per drain | 72,120 | NA | NA | 0.33 | 60 | 41 | 69 | ||
Agrawal et al. [60] | Filter cartridges for subsurface drains on golf course | Activated carbon, cement kiln dust (CKD) with 95% sand, steel slag, and zeolites | 14.7 slag, 7.8 zeolite, 5 activated carbon, and 16.8 CKD/sand mixture | NA | Median 3.4 m (day 1) and 2.7 m (day 2) | 0–1 | 69 | −101 | −150 |
Penn and McGrath [37] | Confined bed filter for treating pond water | EAF slag | 454 | 6.3–14 | 10 m | 0.38 | 172 | 59 | 34 |
Treated EAF slag | 454 | 6.3–14 | 10 m | 0.34 | 149 | 54 | 36 | ||
Penn and Bowen [11] | Confined bed filter for treating pond water | EAF slag | 285 | 6.3–14 | 7 m | 0.26–0.62 | 376 | 83 | 22 |
Treated EAF slag: first coating | 285 | 6.3–14 | 7 m | 0.16–0.62 | 233 | 82 | 35 | ||
Treated EAF slag: second coating | 285 | 6.3–14 | 7 m | 0.18–0.41 | 285 | 80 | 28 | ||
Penn et al. [12] | Confined surface bed for golf course runoff | EAF slag | 2721 | 6.3–14 | 9 m | 0.3–1.6 | 103 | 26 | 25 |
Penn et al. [13] | Confined surface bed for golf course runoff | EAF slag | 2721 | 0.5–14 | 10 m | 0.5 | 160 | 53 | 33 |
Wang et al. [61] | Runoff interception trenches | EAF slag | 6048 | 6.3–14 | 1 m | 4.3 | 44 | 8 | 18 |
Penn et al. [13] | Confined surface bed for poultry farm runoff | Treated EAF slag | 36,000 | 6.3–14 | 16.8 m | 0.5–15 | 560 | 116 | 21 |
Penn et al. [21] | Modular boxes for treating pond water from poultry farm runoff | EAF slag | 15,000 | 6.3–14 | NA | 1.04 | 37 | 10 | 27 |
Ditch filter for agricultural runoff | EAF slag | 79,495 | 6.3–14 | 20 m | 0.6 | 43 | 11 | 26 | |
62,801 | 1.5 | 73 | 8 | 11 | |||||
66,776 | 0.9 | 107 | 26 | 24 |
Category of P Removal Structure | Cumulative P Removal Efficiency (%): All Data | Cumulative P Removal Efficiency (%): Highly Influential Points Removed |
---|---|---|
Waste water: sand-shale-soil | 24 NS | 21 ** |
Waste water: Ca-rich materials | 16 ** | 74 ** |
Waste water: slag | 52 * | NA |
Waste water: MDRs and Fe-rich materials | 35 ** | NA |
Non-point: non-slag | 71 ** | 29 ** |
Non-point: slag | 43 ** | 25 ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penn, C.; Chagas, I.; Klimeski, A.; Lyngsie, G. A Review of Phosphorus Removal Structures: How to Assess and Compare Their Performance. Water 2017, 9, 583. https://doi.org/10.3390/w9080583
Penn C, Chagas I, Klimeski A, Lyngsie G. A Review of Phosphorus Removal Structures: How to Assess and Compare Their Performance. Water. 2017; 9(8):583. https://doi.org/10.3390/w9080583
Chicago/Turabian StylePenn, Chad, Isis Chagas, Aleksandar Klimeski, and Gry Lyngsie. 2017. "A Review of Phosphorus Removal Structures: How to Assess and Compare Their Performance" Water 9, no. 8: 583. https://doi.org/10.3390/w9080583
APA StylePenn, C., Chagas, I., Klimeski, A., & Lyngsie, G. (2017). A Review of Phosphorus Removal Structures: How to Assess and Compare Their Performance. Water, 9(8), 583. https://doi.org/10.3390/w9080583