The Spatiotemporal Evolution and Trend Prediction of Ecological Wellbeing Performance in China
Abstract
:1. Introduction
2. Research Methods and Sources of Data Used
2.1. Research Methods
2.1.1. Super-Efficiency SBM Model
2.1.2. Analysis of Spatial Correlation Performance
2.1.3. Spatial Markov Chain
2.2. Constructing an Index System
2.3. Data Sources
3. Analysis of the Results
3.1. Determination and Time Series Analysis of China’s EWP
3.2. Time Evolution Characteristics of EWP in China
3.3. Spatial Evolution Characteristics of EWP in China
3.4. Predicting the Spatiotemporal Evolution Trend of EWP in China
4. Discussion and Policy Recommendations
4.1. Interpretation of the Results
4.2. Policy Recommendations
4.2.1. Enact Special Laws and Regulations for Resource Utilization and Ecological Protection
4.2.2. Promote and Improve the Mechanism of Public Participation in the Rational Utilization of Resources and Ecological Environment Protection
4.2.3. Establish a Dynamic Monitoring System for Resource Utilization and Ecological Environmental Protection
4.2.4. Strengthen Structural Adjustment, Accomplish High-Quality Economic Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X. Research on the Coordinated Development of Economy and Society; Intellectual Property Press: Beijing, China, 2009. [Google Scholar]
- Max-Neef, M. Economic growth and quality of life: A threshold hypothesis. Ecol. Econ. 1995, 15, 115–118. [Google Scholar] [CrossRef]
- Philip, L.; Matthew, C. The end of economic growth? A contracting threshold hypothesis. Ecol. Econ. 2010, 69, 2213–2223. [Google Scholar]
- Yacouba, K.; Halil, A. Human well-being versus ecological footprint in MENA countries: A trade-off? J. Environ. Manag. 2020, 263, 1–16. [Google Scholar]
- Toth, G.; Szigeti, C. The historical ecological footprint: From over-population to over-consumption. Ecol. Indic. 2016, 60, 283–291. [Google Scholar] [CrossRef]
- Pirgmaier, E. The neoclassical trojan horse of steady-state economics. Ecol. Econ. 2017, 133, 52–61. [Google Scholar] [CrossRef]
- Daly, H.E. Economics in a Full World. Sci. Am. 2005, 293, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Victor, P. Questioning Economic Growth. Nature 2010, 468, 370–371. [Google Scholar] [CrossRef]
- Jorgenson, A.; Alekseyko, A.; Giedraitis, V. Energy consumption, human well-being, and economic development in central and eastern European nations: A cautionary tale of sustainability. Energy Policy 2014, 66, 419–427. [Google Scholar] [CrossRef]
- O’Neill, D.W. The proximity of nations to a socially sustainable steady state economy. J. Clean. Prod. 2015, 84, 1213–1231. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.S.; Galli, A.; Niccolucci, V.; David, L.; Bastianoni, S.; Wackernagel, M.; Marchettini, N. Ecological footprint: Refining the carbon footprint calculation. Ecol. Indic. 2016, 61, 390–403. [Google Scholar] [CrossRef]
- Zang, M.; Zhu, D.; Liu, G. Ecological well-being performance: Concept, connotation and empirical of G20. China Popul. Resour. Environ. 2013, 5, 118–124. [Google Scholar]
- Zhang, S.; Zhu, D.; Shi, Q.; Cheng, M. Which countries are more ecologically efficient in improving human well-being? An application of the index of ecological well-being performance. Resour. Conserv. Recycl. 2018, 129, 112–119. [Google Scholar] [CrossRef]
- Zhu, D. Ecological economics: Economics and management of sustainable development. Bull. Chin. Acad. Sci. 2008, 6, 520–530. [Google Scholar]
- Long, L. Evaluation of ecological civilization construction performance and its international comparison from the perspective of overall well-being. J. Nat. Resour. 2019, 6, 1259–1272. [Google Scholar]
- WBCSD. Eco-Efficiency: Leadership for Improved Economic and Environmental Performance; WBCSD: Geneva, Switzerland, 1996. [Google Scholar]
- Common, M. Measuring national economic performance without using price. Ecol. Econ. 2007, 1, 92–102. [Google Scholar] [CrossRef]
- Abdallah, S.; Thopson, S.; Michaelson, J.; Marks, N.; Steuer, N. The Happy Planet Index 2.0: Why Good Lives Don’t Have to Cost the Earth; New Economics Foundation: London, UK, 2009. [Google Scholar]
- Zhu, D.; Zhang, S. Research on ecological wellbeing performance and its relationship with economic growth. China Popul. Resour. Environ. 2014, 9, 59–67. [Google Scholar]
- Daly, H.E. Beyond Growth: The Economics of Sustainable Development; Beacon Press: Boston, MA, USA, 1996. [Google Scholar]
- Qi, P.; Xu, Y.; Deng, L. A review of ecological well-being performance study home and abroad. J. Shenyang Univ. Technol. (Soc. Sci. Ed.) 2017, 6, 521–526. [Google Scholar]
- Veenhoven, R. World database of happiness. Soc. Indic. Res. 1995, 34, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Daly, H.E.; Cobb, J.B. For Common Good: Redirecting the Economy Towards Community, the Environment and a Sustainable Future; Beacon Press: Boston, MA, USA, 1989. [Google Scholar]
- Long, L. Evaluation of urban ecological well-being performance of Chinese major cities based on two-stage super-efficiency network SBM model. China Popul. Resour. Environ. 2019, 7, 1–10. [Google Scholar]
- Long, L.; Wang, X.; Guo, B. Evaluation of urban ecological well-being performance based on revised DEA model—A case study of 35 major cities in China. J. Nat. Resour. 2017, 4, 595–605. [Google Scholar]
- Zhu, D.; Zhang, S. Ecological wellbeing performance and further research on sustainable development. J. Tongji Univ. (Soc. Sci. Sect.) 2014, 5, 106–115. [Google Scholar]
- Fang, S.; Xiao, Q. Research on regional ecological well-being performance and spatial effect in China. China Popul. Resour. Environ. 2019, 3, 1–10. [Google Scholar]
- Feng, J.; Yuan, J. Ecological welfare performance—A new analysis tool for sustainable development. Sci. Technol. Manag. Res. 2016, 12, 240–244. [Google Scholar]
- Feng, Y.; Zhong, S.; Li, Q.; Zhao, X.; Dong, X. Ecological well-being performance growth in China (1994–2014): From perspectives of industrial structure green adjustment and green total factor productivity. J. Clean. Prod. 2019, 236, 1–13. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Y.; Shuai, C.; Shen, L.; Ren, H.; Wang, Y. Have cities effectively improved ecological well-being performance? Empirical analysis of 278 Chinese cities. J. Clean. Prod. 2020, 245, 118913. [Google Scholar] [CrossRef]
- Bian, J.; Ren, H.; Liu, P. Evaluation of urban ecological well-being performance in China: A case study of 30 provincial capital cities. J. Clean. Prod. 2020, 254, 120109. [Google Scholar] [CrossRef]
- Knight, K.W.; Rosa, E.A. The environmental efficiency of well-being: A cross-national analysis. Soc. Sci. Res. 2011, 40, 931–949. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 6, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Copper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhao, Z.; Zhang, Y.; Jing, H.; Gao, S.; Fang, J. Does “Forage-Livestock Balance” policy impact ecological efficiency of grasslands in China? J. Clean. Prod. 2019, 207, 343–349. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 3, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 1, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Anderson, T.W.; Goodman, L.A. Statistical inference about Markov chains. Ann. Math. Stat. 1957, 28, 89–110. [Google Scholar] [CrossRef]
- Balzter, H. Markov chain models for vegetation dynamics. Ecol. Model. 2000, 126, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.A.; Paelinck, J.H.P. An equation by any other name is still the same: On spatial econometrics and spatial statistics. Anim. Reg. Sci. 2007, 41, 209–227. [Google Scholar] [CrossRef]
- Anselin, L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Agovino, M.; Crociata, A.; Sacco, P.L. Proximity effects in obesity rates in the US: A spatial Markov chains approach. Soc. Sci. Med. 2019, 220, 301–311. [Google Scholar] [CrossRef]
- Anselin, L.; Gallo, J.L.; Jayet, H. Spatial Panel Economics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Reinhard, S.; Lovell, C.A.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables: Estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Camarero, M.; Castillo, J.; Picazo-Tadeo, A.J.; Tamarit, C. Eco-efficiency and convergence in OECD Countries. Environ. Resour. Econ. 2013, 55, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Kuosmanen, T.; Kortelainen, M. Measuring eco-efficiency of production with data envelopment analysis. J. Ind. Ecol. 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Cummins, R.A.; Eckersley, R.; Lo, S.K.; Okerstrom, E. The Australian unity wellbeing index: An overview. Soc. Indic. Network News 2003, 76, 1–4. [Google Scholar]
- Hall, J.; Giovannini, E.; Morrone, A.; Ranuzzi, G. A Framework to Measure the Progress of Societies; OECD Statistics Working Paper: Paris, France, 2010. [Google Scholar]
- United Nations Development Programme. Human Development Report; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Wang, S.; Gao, S.; Huang, Y.; Shi, C. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends. J. Geogr. Sci. 2020, 30, 757–774. [Google Scholar] [CrossRef]
- Berkel, R.V.; Fujita, T.; Hashimoto, S.; Yong, G. Industrial and urban symbiosis in Japan: Analysis of the Eco-Town Program 1997–2006. J. Environ. Manag. 2009, 90, 1544–1556. [Google Scholar] [CrossRef] [PubMed]
- Charnley, S.; Engelbert, B. Evaluating public participation in environmental decision-making: EPA’s superfund community involvement program. J. Environ. Manag. 2005, 77, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.J.; Diduck, A.P. Reconceptualizing public participation in environmental assessment as EA civics. Environ. Impact Assess. Rev. 2017, 62, 174–182. [Google Scholar] [CrossRef]
- Gurney, K.R.; Romero-Lankao, P.; Seto, K.C.; Hutyra, L.R.; Duren, R.; Kennedy, C.; Pincetl, S. Track urban emissions on a human scale. Nature 2015, 525, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuting the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Yang, Z.; Wei, X. The measurement and influences of China’s urban total factor energy efficiency under environmental pollution: Based on the game cross-efficiency DEA. J. Clean. Prod. 2019, 209, 439–450. [Google Scholar] [CrossRef]
1 | |
2 | |
3 |
Category | Primary Indicators | Secondary Indicators | Tertiary Indicators |
---|---|---|---|
Input index | Resource consumption | Energy consumption | Per capita consumption of standard coal |
Land consumption | Construction land resources per capita | ||
Water consumption | Water consumption per capita | ||
Environmental pollution | Exhaust emissions | SO2 emissions per capita | |
Smoke and dust emission per capita | |||
Wastewater discharge | Chemical oxygen demand emissions per capita | ||
Ammonia nitrogen emissions per capita | |||
Solid waste discharge | Production of general industrial solid waste per capita | ||
Output indicators | Welfare level | Economic development level | GDP Per capita |
Education development level | Average year of education | ||
Health care development level | Average life expectancy |
t/t + 1 | n | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
1 | 90 | 0.9556 | 0.0444 | 0 | 0 |
2 | 102 | 0.1471 | 0.8333 | 0.0196 | 0 |
3 | 97 | 0.0103 | 0.1031 | 0.8557 | 0.0309 |
4 | 101 | 0 | 0 | 0.0990 | 0.9010 |
Space Lag | t/t + 1 | n | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | |
3 | 0 | 0 | 0 | 0 | 0 | |
4 | 0 | 0 | 0 | 0 | 0 | |
2 | 1 | 39 | 0.8974 | 0.1026 | 0 | 0 |
2 | 24 | 0.2917 | 0.7083 | 0 | 0 | |
3 | 2 | 0 | 0.5000 | 0.5000 | 0 | |
4 | 0 | 0 | 0 | 0 | 0 | |
3 | 1 | 50 | 1.0000 | 0 | 0 | 0 |
2 | 39 | 0.1282 | 0.8205 | 0.0513 | 0 | |
3 | 62 | 0.0161 | 0.0806 | 0.8710 | 0.0323 | |
4 | 57 | 0 | 0 | 0.0877 | 0.9123 | |
4 | 1 | 1 | 1.0000 | 0 | 0 | 0 |
2 | 39 | 0.0769 | 0.9231 | 0 | 0 | |
3 | 33 | 0 | 0.1212 | 0.8485 | 0.0303 | |
4 | 44 | 0 | 0 | 0.1136 | 0.8864 |
Space Lag | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Initial state | 0.0667 | 0.2333 | 0.3333 | 0.3667 | |
Limit distribution without considering spatial lag | 0.7319 | 0.2185 | 0.0379 | 0.0118 | |
Limit distribution considering spatial lag | 1 | / | / | / | / |
2 | 0.7398 | 0.2602 | 0 | 0 | |
3 | 1.0000 | 0 | 0 | 0 | |
4 | 1.0000 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Yu, Z.; Wu, M.; Ning, J.; Lv, T. The Spatiotemporal Evolution and Trend Prediction of Ecological Wellbeing Performance in China. Land 2021, 10, 12. https://doi.org/10.3390/land10010012
Yao L, Yu Z, Wu M, Ning J, Lv T. The Spatiotemporal Evolution and Trend Prediction of Ecological Wellbeing Performance in China. Land. 2021; 10(1):12. https://doi.org/10.3390/land10010012
Chicago/Turabian StyleYao, Lan, Zhenning Yu, Mengya Wu, Jiachen Ning, and Tiangui Lv. 2021. "The Spatiotemporal Evolution and Trend Prediction of Ecological Wellbeing Performance in China" Land 10, no. 1: 12. https://doi.org/10.3390/land10010012
APA StyleYao, L., Yu, Z., Wu, M., Ning, J., & Lv, T. (2021). The Spatiotemporal Evolution and Trend Prediction of Ecological Wellbeing Performance in China. Land, 10(1), 12. https://doi.org/10.3390/land10010012