Bundles and Hotspots of Multiple Ecosystem Services for Optimized Land Management in Kentucky, United States
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Framework for Quantifying Multiple Ecosystem Services Bundles and Hotspots
2.2.1. Ecosystem Services Mapping
Timber Production
Water Retention and Water Provision
Carbon Sequestration
Soil Retention
Water Purification
2.2.2. Ecosystem Services Interaction
2.2.3. Ecosystem Services Bundle
2.2.4. Ecosystem Services Hotspots
2.2.5. Data Requirement and Preparation
3. Results
3.1. Spatial Mapping of Individual Ecosystem Services
3.2. Interactions Among Ecosystem Services
3.3. Ecosystem Services Bundles
3.4. Ecosystem Services Hotspots
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MEA. Millennium Ecosystem Assessment Synthesis Report; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Zhao, M.; Peng, J.; Liu, Y.; Li, T.; Wang, Y. Mapping watershed-level ecosystem service bundles in the Pearl River Delta, China. Ecol. Econ. 2018, 152, 106–117. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Wang, S.; Wang, J.; Zhai, R. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Ecosyst. Serv. 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honey-Rosés, J.; Pendleton, L.H. A demand driven research agenda for ecosystem services. Ecosyst. Serv. 2013, 1, 160–162. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. PNAS 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H.; Brunner, N.M. Analyzing land-use change scenarios for trade-offs among cultural ecosystem services in the Southern Rocky Mountains. Ecosyst. Serv. 2017, 26, 431–444. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, H.; Wen, Z.; Liu, L.; Robinson, B.E.; Li, R.; Li, C.; Kong, L. Ecosystem service synergies/trade-offs informing the supply-demand match of ecosystem services: Framework and application. Ecosyst. Serv. 2019, 37, 100939. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Corell, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Tallis, H.; Kareiva, P.; Marvier, M.; Chang, A. An ecosystem services framework to support both practical conservation and economic development. PNAS 2008, 105, 9457–9464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, E.; Cavender-Bares, J.; Balvanera, P.; Mwampamba, T.H.; Polasky, S. Trade-offs in ecosystem services and varying stakeholder preferences: Evaluating conflicts, obstacles, and opportunities. Ecol. Soc. 2015, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Peterson, G.D.; Gordon, L. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. PNAS 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkelboom, F.; Leone, M.; Jacobs, S.; Kelemen, E.; García-Llorente, M.; Baró, F.; Termansen, M.; Barton, D.N.; Berry, P.; Stange, E. When we cannot have it all: Ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 2018, 29, 566–578. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Saidi, N.; Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 2018, 13, 113001. [Google Scholar] [CrossRef]
- Yang, G.; Ge, Y.; Xue, H.; Yang, W.; Shi, Y.; Peng, C.; Du, Y.; Fan, X.; Ren, Y.; Chang, J. Using ecosystem service bundles to detect trade-offs and synergies across urban–rural complexes. Landsc. Urban Plan. 2015, 136, 110–121. [Google Scholar] [CrossRef]
- Fernandez-Campo, M.; Rodriguez-Morales, B.; Dramstad, W.E.; Fjellstad, W.; Diaz-Varela, E.R. Ecosystem services mapping for detection of bundles, synergies and trade-offs: Examples from two Norwegian municipalities. Ecosyst. Serv. 2017, 28, 283–297. [Google Scholar] [CrossRef]
- Lin, S.; Wu, R.; Yang, F.; Wang, J.; Wu, W. Spatial trade-offs and synergies among ecosystem services within a global biodiversity hotspot. Ecol. Indic. 2018, 84, 371–381. [Google Scholar] [CrossRef]
- Cademus, R.; Escobedo, F.J.; McLaughlin, D.; Abd-Elrahman, A. Analyzing trade-offs, synergies, and drivers among timber production, carbon sequestration, and water yield in Pinus elliotii forests in southeastern USA. Forests 2014, 5, 1409–1431. [Google Scholar] [CrossRef] [Green Version]
- Martín-López, B.; Iniesta-Arandia, I.; García-Llorente, M.; Palomo, I.; Casado-Arzuaga, I.; Del Amo, D.G.; Gómez-Baggethun, E.; Oteros-Rozas, E.; Palacios-Agundez, I.; Willaarts, B.; et al. Uncovering ecosystem service bundles through social preferences. PLoS ONE 2012, 7, e38970. [Google Scholar]
- Christie, M.; Martín-López, B.; Church, A.; Siwicka, E.; Szymonczyk, P.; Sauterel, J.M. Understanding the diversity of values of “Nature’s contributions to people”: Insights from the IPBES Assessment of Europe and Central Asia. Sustain. Sci. 2019, 14, 1267–1282. [Google Scholar] [CrossRef] [Green Version]
- Kadykalo, A.N.; López-Rodriguez, M.D.; Ainscough, J.; Droste, N.; Ryu, H.; Ávila-Flores, G.; Le Clec’h, S.; Muñoz, M.C.; Nilsson, L.; Rana, S.J.E.; et al. Disentangling ‘ecosystem services’ and ‘nature’s contributions to people’. Ecosyst. People 2019, 15, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.; Seixas, C.S.; Zaccagnini, M.E.; Bedoya-Gaitán, M.; Valderrama, N.; Anderson, C.B.; Arroyo, M.T.K.; Bustamante, M.; Cavender-Bares, J.; Diaz-de-Leon, A.; et al. The IPBES Regional Assessment Report On Biodiversity and Ecosystem Services for the Americas; IPBES: Bonn, Germany, 2018. [Google Scholar]
- BEA. Department of Commerce. 2017. Available online: https://www.bea.gov (accessed on 12 August 2019).
- Oswalt, C.M. Forests of Kentucky, 2013, in Resource Update FS-109; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2017. [Google Scholar]
- KWOA. Available online: https://wwwkwoanet/ (accessed on 15 July 2020).
- Thomas, B. Kentucky Woodland Owners: Who They Are and the Challenges They Face, in Kentucky Woodlands; Kentucky Energy and Environment Cabinet: Frankfort, KY, USA, 2017; pp. 3–7. [Google Scholar]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST+ VERSION+ User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington County, VA, USA; World Wildlife Fund: Gland, Switzerland, 2016. [Google Scholar]
- Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; Pennington, D.; Mendoza, G.; Aukema, J. InVEST 1.004 Beta User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA, 2010. [Google Scholar]
- De Klein, C.; Novoa, R.; Ogle, S.; Smith, K.; Rochette, P.; Wirth, C.; McConkey, B.; Mosier, A.; Rypdal, K.; Williams, S. Agriculture, Forestry and Other Land Use. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. In IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Bai, Y.; Zhuang, C.; Ouyang, Z.; Zheng, H.; Jiang, B. Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed. Ecol Complex 2011, 8, 177–183. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote. Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- PRISM Climate Group, O.S.U. Available online: http://prism.oregonstate.edu/ (accessed on 12 August 2018).
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Zheng, H.; Xiao, Y.; Ouyang, Z.; Li, C.; Zhang, J.; Huang, B.J.S. Mapping ecosystem service bundles to detect distinct types of multifunctionality within the diverse landscape of the yangtze river basin, China. Sustainability 2018, 10, 857. [Google Scholar] [CrossRef] [Green Version]
- Shoyama, K.; Yamagata, Y. Local perception of ecosystem service bundles in the Kushiro watershed, Northern Japan–Application of a public participation GIS tool. Ecosyst. Serv. 2016, 22, 139–149. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Gurung, K.; Yang, J.; Fang, L. Assessing Ecosystem Services from the Forestry-Based Reclamation of Surface Mined Areas in the North Fork of the Kentucky River Watershed. Forests 2018, 9, 652. [Google Scholar] [CrossRef] [Green Version]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.G.; Odgaard, M.V.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.-C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Schröter, M.; Remme, R.P. Spatial prioritisation for conserving ecosystem services: Comparing hotspots with heuristic optimisation. Landsc. Ecol. 2016, 31, 431–450. [Google Scholar] [CrossRef] [Green Version]
Types | Timber Production | Carbon Sequestration | Water Provision | Water Retention | Soil Retention | Nitrogen Retention |
---|---|---|---|---|---|---|
Carbon Sequestration | 0.944 ** | |||||
Water Provision | −0.501 ** | −0.647 ** | ||||
Water Retention | −0.095 | 0.061 | −0.411 ** | |||
Soil Retention | 0.891 ** | 0.845 ** | −0.226 * | −0.249 * | ||
Nitrogen Retention | 0.893 ** | 0.963 ** | −0.761 ** | 0.146 | 0.734 ** | |
Phosphorus Retention | 0.921 ** | 0.976 ** | −0.708 ** | 0.079 | 0.767 ** | 0.989 ** |
Types | Timber Production | Carbon Sequestration | Water Provision | Water Retention | Soil Retention | Nitrogen Retention |
---|---|---|---|---|---|---|
Carbon Sequestration | 40.96% | |||||
Water Provision | 1.50% | 0 | ||||
Water Retention | 7.09% | 15.81% | 0.01% | |||
Soil Retention | 43.01% | 38.40% | 0.50% | 5.95% | ||
Nitrogen Retention | 12.65% | 13.15% | 0 | 34.72% | 1.23% | |
Phosphorus Retention | 12.23% | 13.18% | 0 | 35.34% | 1.18% | 98.26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Ochuodho, T.O.; Yang, J.; Agyeman, D.A. Bundles and Hotspots of Multiple Ecosystem Services for Optimized Land Management in Kentucky, United States. Land 2021, 10, 69. https://doi.org/10.3390/land10010069
Bai Y, Ochuodho TO, Yang J, Agyeman DA. Bundles and Hotspots of Multiple Ecosystem Services for Optimized Land Management in Kentucky, United States. Land. 2021; 10(1):69. https://doi.org/10.3390/land10010069
Chicago/Turabian StyleBai, Yang, Thomas O. Ochuodho, Jian Yang, and Domena A. Agyeman. 2021. "Bundles and Hotspots of Multiple Ecosystem Services for Optimized Land Management in Kentucky, United States" Land 10, no. 1: 69. https://doi.org/10.3390/land10010069
APA StyleBai, Y., Ochuodho, T. O., Yang, J., & Agyeman, D. A. (2021). Bundles and Hotspots of Multiple Ecosystem Services for Optimized Land Management in Kentucky, United States. Land, 10(1), 69. https://doi.org/10.3390/land10010069