Quantifying and Evaluating the Cultivated Areas Suitable for Fallow in Chongqing of China Using Multisource Data
Abstract
:1. Introduction
2. Study Areas and Data Sources
2.1. Study Areas
2.2. Data Sources and Data Preprocessing
3. Methods
3.1. Selection of the Suitability Evaluation Index for Cultivated Land Fallow
3.1.1. Natural Factors
3.1.2. Social Factors
3.1.3. Location Factors
3.2. Measurement of the ILF
3.3. Validating the ILF
4. Results
4.1. Spatial Differentiation of the NAT Index in Chongqing
4.1.1. Spatial Differentiation of Natural Indicators
4.1.2. Spatial Differentiation of the NAT Index
4.2. Spatial Differentiation of the SOC Index
4.2.1. Spatial Differentiation of Social Indicators
4.2.2. Spatial Differentiation of the SOC Index
4.3. Spatial Differentiation of the LOC Index
4.3.1. Spatial Differentiation of Location Indicators
4.3.2. Spatial Differentiation of the LOC Index
4.4. Spatial Differentiation of the ILF
5. Discussion
5.1. Validation of Results
5.2. Spatial Variation of Cultivated Land Fallow in Chongqing
5.3. Limitations and Future Perspectives
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RESDC | Center for Resources and Environmental Sciences of the Chinese Academy of Sciences |
NE | Northeastern region of Chongqing |
SE | Southeastern region of Chongqing |
MC | Midlands region of Chongqing |
UC | Metropolitan region of Chongqing |
WC | Western region of Chongqing |
SC | Southern region of Chongqing |
ILF | Comprehensive index of cultivated land fallow |
NAT | Comprehensive index of natural factors |
SOC | Comprehensive index of social factors |
LOC | Comprehensive index of location factors |
HAF | Highly appropriate cultivated land fallow |
MAF | Moderately appropriate cultivated land fallow |
LAF | Lowly appropriate cultivated land fallow |
IAF | Inappropriate cultivated land fallow |
References
- Peters, M.K.; Hemp, A.; Appelhans, T.; Becker, J.N.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B.; et al. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 2019, 568, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Midgley, G.F. Biodiversity and ecosystem function. Science 2012, 335, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L.; Chude, V.; Yagi, K.; Krasilnikov, P.; Alavi Panah, S.K.; Mendonça Santos, M.; Pennock, D.; McKenzie, N.; Nachtergaele, F.; Broll, G. Status of the World’s Soil Resources (SWSR)-Main Report; FAO: Rome, Italy, 2015. [Google Scholar]
- Shi, F.; Liu, S.; An, Y.; Sun, Y.; Zhao, S.; Liu, Y.; Li, M. Spatio-temporal dynamics of landscape connectivity and ecological network construction in Long Yangxia basin at the upper Yellow river. Land 2020, 9, 265. [Google Scholar] [CrossRef]
- Ghimire, S.; Higaki, D.; Bhattarai, T. Estimation of soil erosion rates and eroded sediment in a degraded catchment of the sialic hills, Nepal. Land 2013, 2, 370–391. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Guo, R. 2015 Global Land Use Situation Analysis and lts Enlightenment. Land Resour. Inf. 2016, 3–9. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Liu, J.; Chen, X.; Ning, J. Impact of farmland changes on production potential in China during 1990–2010. J. Geogr. Sci. 2015, 25, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q. Some issues on the relationship between land resources development, production and food security. Resour. Sci. 1999, 21, 5–8. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, S.; Wu, S.; Ren, K. Cultivated land resources and strategies for its sustainable utilization and protection in China. Acta Pedol. Sin. 2006, 43, 662–672. [Google Scholar] [CrossRef]
- Feng, Z.; Li, X. The stratagem of cultivated land and food supplies security: Storing food in land—raising the comprehensive productivity of land resource of China. Geogr. Territ. Rial. Res. 2000, 16, 1–5. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, Q. Mode of rotation/fallow management in typical areas of China and its development strategy. Acta Pedol. Sin. 2018, 55, 283–292. [Google Scholar] [CrossRef]
- Yang, Q.; Bi, G.; Chen, Z.; Zeng, L.; Yang, R. Spatial allocation of fallow land in karst rocky desertification areas: A case study in Qinglong County, Guizhou Province. Acta Geogr. Sin. 2018, 73, 2250–2266. [Google Scholar] [CrossRef]
- Lee, S.-H.; Taniguchi, M.; Mohtar, R.H.; Choi, J.-Y.; Yoo, S.-H. An analysis of the Water-Energy-Food-Land requirements and CO2 emissions for food security of rice in Japan. Sustainability 2018, 10, 3354. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.Y.; Shamsi, I.H.; Sun, D.S.; Ostermann, A.; Zhang, Q.C.; Zhang, Y.S.; Lin, X.Y. Impact of manure application on forms and quantities of phosphorus in a Chinese Cambisol under different land use. J. Soils Sediments 2013, 13, 837–845. [Google Scholar] [CrossRef]
- Yang, M.; Ehsan, E.; Khurram, Y.; Riaz, A.; Adnan, A.; Tahir, I. Quantification of mechanization index and its impact on crop productivity and socio-economic factors. Int. Agric. Eng. J. 2017, 26, 59–64. [Google Scholar]
- Elhag, K.M.; Zhang, W. Monitoring and assessment of drought focused on its impact on sorghum yield over Sudan by using meteorological drought indices for the period 2001-2011. Remote Sens. 2018, 10, 1231. [Google Scholar] [CrossRef] [Green Version]
- Elahi, E.; Weijun, C.; Jha, S.K.; Zhang, H. Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability. Energy 2019, 183, 191–204. [Google Scholar] [CrossRef]
- Shi, K.; Yang, Q.-Y.; Li, Y.; Sun, X. Mapping and evaluating cultivated land fallow in Southwest China using multisource data. Sci. Total Environ. 2019, 654, 987–999. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, R.; Wang, Y.; Shi, K. Does fallowing cultivated land threaten food security? Empirical evidence from Chinese pilot provinces. Sustainability 2019, 11, 2836. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Teng, Y.; Huang, G. Consideration about exploring pilot program of farmland rotation and fallow system in China. Ecol. Environ. Sci. 2017, 26, 1–5. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, Z.; Xin, G.; Zeng, L. The historical evolution of Chinese cultivation system and some thoughts on the current land fallow and crop rotation policy. West Forum 2018, 28, 1–8. [Google Scholar] [CrossRef]
- Shang, L. Spatial-Temporal Pattern Analysis of Cultivated Land Productivity in Shandong Province Based on NPP Data. Master’s Thesis, Shandong Normal University, Shandong, China, 2018. [Google Scholar]
- Wang, L.; He, P.; Wei, J. Study on cultivated land fallow scale based on national food security strategy. Rural Econ. 2018, 78–80. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, G.; Zhao, Q. Brief analysis on connotation, significance and implementing essentials of rotation fallow under new normal in China. Soils 2017, 49, 651–657. [Google Scholar] [CrossRef]
- Zheng, P.; Zheng, Y.; Zhao, L.; Song, A.A.; Zhang, C. Study on suitability evaluation of regional cultivated land consolidation based on dual constraints. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 83–91. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W. Combining natural and human elements to evaluate regional human settlements quality based on raster data: A case study in Beijing-Tianjin-Hebei region. Acta Geogr. Sin. 2016, 71, 2141–2154. [Google Scholar] [CrossRef]
- Zheng, C.; Zeng, Y.; Zhao, Y.; Gao, W.; Zhao, D.; Wu, B. Analysis of land cover changes in southwestern China since the 1990s. Acta Ecol. Sin. 2016, 36, 7858–7869. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Li, X. Cropland abandonment risk at parcel level in chongqing mountainous area. J. Mt. Sci. 2017, 35, 543–555. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z.; Li, Z.; Li, X.; Xing, L.; Sun, L. Drivers of cropland abandonment in mountainous areas: A household decision model on farming scale in Southwest China. Land Use Policy 2016, 57, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Jiang, Y.; Zhang, Y.; Duan, S.; Liu, j.; Zeng, Z.; Zeng, S. Spatial distribution and driving factors of karst rocky desertification based on GIS and geodetectors. Acta Geogr. Sin. 2019, 74, 1025–1039. [Google Scholar] [CrossRef]
- Ding, W.; Jiang, G.; Shi, D.; Liu, Y.; Jiang, P.; Chang, S.; Liu, Z. Effect of different soil properties on plow-layer soil quality of sloping farmland in purple hilly areas. Acta Ecol. Sin. 2017, 37, 6480–6493. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cao, M.; Tao, B.; Li, K. The characteristics of spatio-temporal patterns in precipitation in China under the background of global climate change. Geogr. Res. 2006, 25, 1031–1040. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Huang, C.; Chen, Y.; Li, L. Remotely sensed nighttime lights reveal increasing human activities in protected areas of China mainland. Remote Sens. Lett. 2018, 9, 468–477. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W.; Zhang, X. Evolutionary game and simulation of management strategies of fallow cultivated land: A case study in Hunan province, China. Land Use Policy 2018, 71, 86–97. [Google Scholar] [CrossRef]
- Hao, B.; Ma, M.; Li, S.; Li, Q.; Hao, D.L.; Huang, J.; Ge, Z.; Yang, H.; Han, X. Land use change and climate variation in the Three Gorges Reservoir catchment from 2000 to 2015 based on the Google Earth Engine. Sensors 2019, 19, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Xu, X.; Hu, Y.; Liu, Z.; Qiao, Z. Efficiency analysis of bioenergy potential on winter fallow fields: A case study of rape. Sci. Total Environ. 2018, 628–629, 103–109. [Google Scholar] [CrossRef]
- Zhang, F.; An, P.; Wang, J.; Zhang, J.; Liu, L.; Chen, H. Soil quality criteria and methodologies of farmland grading. Resour. Sci. 2002, 24, 71–75. [Google Scholar] [CrossRef]
- Leng, S.; Li, X. New progresses of international study on land quality indicators(lqis). Acta Geogr. Sin. 1999, 54, 83–91. [Google Scholar]
- Xu, G.; Wang, Y.; Wang, J.; Yu, R.; Cui, Z.; Yang, Y. Effect of fallow rotation on microbial biomass carbon in farmland. Chin. J. Soil Sci. 2018, 49, 897–901. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem Cy 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Yan, H.; Liu, J.; Cao, M. Spatial pattern and topographic control of China’s agricultural productivity variability. Acta Geogr. Sin. 2007, 62, 61–70. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Tang, G. Extraction and application of relief of China based on DEM and GISmethod. Bull. Soil Water Conserv. 2001, 21, 57–59. [Google Scholar] [CrossRef]
- Zhang, W.; Li, A. Study on the optimal scale for calculating the relief amplitude in china based on DEM. Geogr. Geo-Inf. Sci. 2012, 28, 8–12. [Google Scholar]
- Yuan, D. Global view on karst rock desertification and integrating control measures and experiences of China. Pratacultural Sci. 2008, 25, 19–25. [Google Scholar]
- Wei, X.; Yang, H. Relationships between the stony desertification and geographical environments factors at the karst region in Chongqing. J. Chongqing Norm. Univ. (Nat. Sci.) 2014, 31, 60–67. [Google Scholar] [CrossRef]
- Hu, C.; Liu, G.; Guo, L.; Liu, Y. Effects of soil erosion on soil physicochemical properties and soil microorganisms. Arid Zone Res. 2014, 31, 702–708. [Google Scholar] [CrossRef]
- Liu, C.; Li, y.; Yang, H.; Min, J.; Wang, C.; Zhang, H. RS and GIS-based assessment for eco-environmental sensitivity of the three gorges reservoir area of Chongqing. Acta Geogr. Sin. 2011, 66, 631–642. [Google Scholar] [CrossRef]
- Taye, M.; Simane, B.; Zaitchik, F.B.; Selassie, G.Y. Land use evaluation over the Jema Watershed, in the Upper Blue Nile River Basin, Northwestern Highlands of Ethiopia. Land 2019, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; He, G.; Liu, H. Modelling regional socio-economic parameters based on comparison of NPP/VIIRS and DMSP/OLS nighttime light imagery. Remote Sens. Inf. 2016, 31, 28–34. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Ju, L.f.; Huang, J. Urbanization and cultivated land changes in china. Econ. Res. J. 2007, 137–145. [Google Scholar]
- Liu, Y.; Chen, B. The study framework of land use/cover change based on sustainable development in China. Geogr. Res. 2002, 21, 324–330. [Google Scholar] [CrossRef]
- Wang, X. Analysis on demographic factors and land use/land cover change. Resour. Sci. 2000, 22, 39–42. [Google Scholar] [CrossRef]
- Chen, B. An outline of the research method of the project “the productivity and population carrying Capcity of the land resource in China”. J. Nat. Resour. 1991, 197–205. [Google Scholar] [CrossRef]
- Fu, Z.; Cai, Y.; Yang, Y.; Dai, E. Research on the relationship of cultivated land change and food security in China. J. Nat. Resour. 2001, 16, 313–319. [Google Scholar] [CrossRef]
- Hettig, E.; Lay, J.; Sipangule, K. Drivers of households’ land-use decisions—A critical review of micro-level studies in tropical regions. Land 2015, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Schroeder, J.; Gregorich, E.; Kurganova, I. Farmers’ perspective on agriculture and environmental change in the circumpolar north of Europe and America. Land 2019, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Huang, J.; Scott, R.; Wang, H. Study on adjustment of geographical location, transportation infrastructure and planting structure. Manag. World 2006, 59–63. [Google Scholar]
- Shi, K.; Yu, B.; Huang, C.; Wu, J.; Sun, X. Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road. Energy 2018, 150, 847–859. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Jianping, W. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Li, L.; Huang, C.; Liu, R.; Chen, Z.; Wu, J. Urban expansion and agricultural land loss in China: A multiscale perspective. Sustainability 2016, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, H.; Wang, p.; Sun, X.; Lu, T. Population spatial processing for Chinese coastal zones based on census and multiple night light data. Resour. Sci. 2013, 35, 2517–2523. [Google Scholar]
- David, G. An Introduction to Agricultural Geography; Routledge: New York, NY, USA, 1995; ISBN 9780415084437. [Google Scholar]
- Tang, X.; Pan, Y.; Liu, Y. Analysis and demonstration of investment implementation model and paths for China’s cultivated land consolidation. Appl. Geogr. 2017, 82, 24–34. [Google Scholar] [CrossRef]
- Wang, Z. Small town construction and rural cultivated land protection measures. Rural Econ. 2006, 102–104. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, S.; Ma, W.; Shi, Z. Space distributing and using of cultivated land in a mountains area. J. Mt. Sci. 2005, 23, 6749–6755. [Google Scholar] [CrossRef]
- Griffith, E. Testing the von Thünen theory in Uruguay. Geogr. Rev. 1973, 500–516. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y.; Chen, Y.; Li, T. The Remote sensing inversion for spatial and temporal changes of multiple cropping index and detection for influencing factors around Bohai rim in China. Sci. Geogr. Sin. 2013, 33, 33,588–593. [Google Scholar] [CrossRef]
- Meng, P.; Hao, J.; Zhou, N.; Hong, S. Difference analysis of effect of rapid urbanization on cultivated land changes in Huang-Huai-Hai plain. Trans. Chin. Soc. Agric. Eng. (Trans. Csae) 2013, 29, 1–10. [Google Scholar] [CrossRef]
- He, C.; Gao, B.; Huang, Q.; Ma, Q.; Dou, Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Skinner, M.W.; Kuhn, R.G.; Joseph, A.E. Agricultural land protection in China: A case study of local governance in Zhejiang Province. Land Use Policy 2001, 18, 329–340. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
Data Name | Data Description | Source |
---|---|---|
Land use/cover data | National land use/cover data with a spatial resolution of 30 m in 2015. | District and County Land Bureau in Chongqing |
Digital elevation model (DEM) | Digital elevation data with a spatial resolution of 30 m in 2005. | Geospatial data clouds (http://www.gscloud.cn) |
Karst area data | Vector files of karst areas for Southwest China in 2015. | Karst Scientific Data Center (http://www.karstdata.cn/) |
Soil erosion data | Average annual soil erosion data was modeled at 30 m spatial resolution with different erosion types in 2010. | Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn/) |
Temperature data | Average annual temperature data with a spatial resolution of 30 m. | RESDC (http://www.resdc.cn/) |
Precipitation data | Average annual precipitation data with a spatial resolution of 30 m. | RESDC (http://www.resdc.cn/) |
Gross domestic product (GDP) | Average annual GDP data with a spatial resolution of 1 km in 2015. | RESDC (http://www.resdc.cn/) |
Demographic data | Average annual population data with a spatial resolution of 1 km in 2015. | RESDC (http://www.resdc.cn/) |
National Polar—orbiting Partnership/ Visible Infrared Imaging Radiometer Suite (NPP–VIIRS) nighttime light data | Annual nighttime light composite data with a spatial resolution of approximately 15 arc—seconds in 2015. | Earth Observation Group of National Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) (https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html) |
Statistical data | Annual statistical data at the prefecture level: total population (104) and production area of cultivated land (104 hm2) in 2015. | Chongqing Statistical Yearbook |
Administrative boundaries | Vector files of provinces and counties in Chongqing in 2015. | National Geomatics Centre of China (http://ngcc.sbsm.gov.cn/article/en/) |
No | Region | Elevation | Relief Amplitude | Karst Reclassify | Soil Erosion | Temperature | Precipitation |
---|---|---|---|---|---|---|---|
(m) | (m) | (°C) | (mm) | ||||
1 | Urban area (UC) | 399.16 | 130.06 | 0.04 | 2.02 | 18.23 | 1195.91 |
2 | Northeastern area (NE) | 847.18 | 286.23 | 0.08 | 2.28 | 14.14 | 1167.87 |
3 | South—eastern area (SE) | 753.70 | 218.85 | 0.14 | 2.25 | 15.50 | 1181.24 |
4 | Southern area (SC) | 683.97 | 187.40 | 0.04 | 2.28 | 16.06 | 1140.46 |
5 | Western area (WC) | 333.70 | 77.17 | 0.02 | 1.94 | 18.38 | 1150.42 |
6 | Metropolitan area (MC) | 517.83 | 153.05 | 0.06 | 2.36 | 17.23 | 1213.71 |
No. | Region | Population | GDP | NPP–VIIRS |
---|---|---|---|---|
(USD) | ||||
1 | UC | 1.09 | 0.22 | 1.40 |
2 | NE | 0.19 | 0.03 | 0.14 |
3 | SE | 0.17 | 0.04 | 0.19 |
4 | SC | 0.27 | 0.13 | 0.31 |
5 | WC | 0.66 | 0.16 | 0.49 |
6 | MC | 0.45 | 0.11 | 0.29 |
No. | Region | City (m) | Town (m) | Rural Settlement (m) | Highway (m) | Water (m) |
---|---|---|---|---|---|---|
1 | UC | 6350.97 | 1625.24 | 86.40 | 933.55 | 311.26 |
2 | NE | 88,817.47 | 3893.24 | 113.48 | 1670.71 | 832.00 |
3 | SE | 51,756.42 | 4231.29 | 177.25 | 1545.64 | 1054.60 |
4 | SC | 18,990.47 | 2048.83 | 110.05 | 1074.26 | 484.89 |
5 | WC | 18,366.36 | 2095.95 | 79.48 | 1002.02 | 235.18 |
6 | MC | 29,614.67 | 2284.04 | 100.60 | 1039.88 | 354.12 |
County | IAF | LAF | MAF | HAF | Total (km2) | ||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | ||
UC | 568.23 | 31.66 | 909.82 | 50.69 | 290.54 | 16.19 | 26.15 | 1.46 | 1794.74 |
NE | 157.90 | 4.56 | 871.24 | 25.19 | 1708.96 | 49.40 | 721.02 | 20.84 | 3459.13 |
SE | 935.80 | 17.22 | 1509.23 | 27.77 | 2077.30 | 38.23 | 911.67 | 16.78 | 5434.00 |
SC | 83.18 | 3.98 | 644.18 | 30.86 | 1029.42 | 49.32 | 330.64 | 15.84 | 2087.41 |
WC | 1907.23 | 24.93 | 4379.16 | 57.24 | 1297.08 | 16.95 | 66.87 | 0.87 | 7650.34 |
MC | 2781.20 | 33.20 | 3300.80 | 39.41 | 1976.18 | 23.59 | 318.36 | 3.80 | 8376.54 |
Total | 6433.54 | 22.34 | 11,614.42 | 40.32 | 8379.48 | 29.09 | 2374.73 | 8.24 | 28,802.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shi, K.; Wang, Y.; Yang, Q. Quantifying and Evaluating the Cultivated Areas Suitable for Fallow in Chongqing of China Using Multisource Data. Land 2021, 10, 74. https://doi.org/10.3390/land10010074
Li Y, Shi K, Wang Y, Yang Q. Quantifying and Evaluating the Cultivated Areas Suitable for Fallow in Chongqing of China Using Multisource Data. Land. 2021; 10(1):74. https://doi.org/10.3390/land10010074
Chicago/Turabian StyleLi, Yuanqing, Kaifang Shi, Yahui Wang, and Qingyuan Yang. 2021. "Quantifying and Evaluating the Cultivated Areas Suitable for Fallow in Chongqing of China Using Multisource Data" Land 10, no. 1: 74. https://doi.org/10.3390/land10010074
APA StyleLi, Y., Shi, K., Wang, Y., & Yang, Q. (2021). Quantifying and Evaluating the Cultivated Areas Suitable for Fallow in Chongqing of China Using Multisource Data. Land, 10(1), 74. https://doi.org/10.3390/land10010074