Emerging Anthropogenic Influences on the Southcentral Alaska Temperature and Precipitation Extremes and Related Fires in 2019
Abstract
:1. Introduction
- How did the climate conditions of 2019 in Southcentral Alaska vary intraseasonally in comparison with previous years from the observational record?
- Do we expect more fire seasons in the future in Southcentral Alaska like 2019?
- What are the relative contributions of temperature and precipitation to future changes of fire risk in Southcentral Alaska?
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Historical Context
3.2. Attribution and Future Projections
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieniek, P.A.; Bhatt, U.S.; Thoman, R.L.; Angeloff, H.; Partain, J.; Papineau, J.; Fritsch, F.; Holloway, E.; Walsh, J.E.; Daly, C.; et al. Climate Divisions for Alaska Based on Objective Methods. J. Appl. Meteorol. Clim. 2012, 51, 1276–1289. [Google Scholar] [CrossRef] [Green Version]
- AICC. 2019 Fire Season Weather Summary. 2019. Available online: https://fire.ak.blm.gov/content/Weather%20Folder/Fire%20Season%20Summaries/2019%20Fire%20Season.pdf (accessed on 10 December 2020).
- Homes, H.; Parrott, J. Scenes of Destruction: The McKinley Fire Raced for Miles along the Parks Highway. Anchorage Daily News. 7 September 2019. Available online: https://www.adn.com/visual/photos/2019/09/07/scenes-of-destruction-the-mckinley-fire-raced-for-miles-along-the-parks-highway/ (accessed on 15 January 2021).
- Earl, E. Feds Declare Economic Disasters for Swan Lake, McKinley Fires. Alsk. J. Commer. 2019. Available online: https://www.alaskajournal.com/2019-11-20/feds-declare-economic-disasters-swan-lake-mckinley-fires (accessed on 15 January 2021).
- AWFI. Ash Pits Are Hazardous to Firefighters. 2019. Available online: https://akfireinfo.com/2019/09/05/ash-pits-are-hazardous-to-firefighters (accessed on 10 December 2020).
- Hahn, M.B.; Kuiper, G.; O’Dell, K.; Fischer, E.V.; Magzamen, S. Wildfire smoke is associated with an increased risk of cardiorespiratory emergency room visits in Alaska. GeoHealth 2020. in review. [Google Scholar]
- NICC. National Interagency Coordination Center: Wildland Fire Summary and Statistics Annual Report 2019. 2019. Available online: https://www.predictiveservices.nifc.gov/intelligence/2019_statssumm/intro_summary19.pdf (accessed on 15 January 2021).
- AICC. Incident Information-Alaska Fires. 2020. Available online: https://fire.ak.blm.gov/incinfo/aklgfire.php (accessed on 10 December 2020).
- Petersen, V. Transmission line damaged by Swan Lake Fire repaired, re-energized. Peninsula Clarion. 19 December 2019. Available online: https://www.peninsulaclarion.com/news/transmission-line-damaged-by-swan-lake-fire-repaired-re-energized/ (accessed on 15 January 2021).
- Brehmer, E. Bradley Lake power line outage from wildfire tops $10M in cost to Alaska Railbelt ratepayers. Anchorage Daily News. 13 December 2019. Available online: https://www.adn.com/business-economy/2019/12/13/bradley-lake-power-line-outage-from-wildfire-tops-10m-in-cost-to-alaska-railbelt-ratepayers/ (accessed on 15 January 2021).
- Ascoli, D.; Hacket-Pain, A.; LaMontagne, J.M.; Cardil, A.; Conedera, M.; Maringer, J.; Motta, R.; Pearse, I.S.; Vacchiano, G. Climate teleconnections synchronize Picea glauca masting and fire disturbance: Evidence for a fire-related form of environmental prediction. J. Ecol. 2020, 108, 1186–1198. [Google Scholar] [CrossRef]
- Duffy, P.A.; Walsh, J.E.; Graham, J.M.; Mann, D.H.; Rupp, T.S. Impacts of large-scale atmospheric–ocean Variability on Alaskan fire season severity. Ecol. Appl. 2005, 15, 1317–1330. [Google Scholar] [CrossRef] [Green Version]
- Hess, J.C.; Scott, C.A.; Hufford, G.L.; Fleming, M.D. El Niño and its impact on fire weather conditions in Alaska. Int. J. Wildland Fire 2001, 10, 1–13. [Google Scholar] [CrossRef]
- Fauria, M.M.; Johnson, E.A. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Wolken, J.M.; Hollingsworth, T.N.; Rupp, T.S.; Chapin, F.S., III; Trainor, S.F.; Barrett, T.M.; Sullivan, P.F.; McGuire, A.D.; Euskirchen, E.S.; Hennon, P.E.; et al. Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems. Ecosphere 2011, 2, 1–35. [Google Scholar] [CrossRef]
- Markon, C.; Gray, S.; Berman, M.; Eerkes-Medrano, L.; Hennessy, T.; Huntington, H.; Littell, J.; McCammon, M.; Thoman, R.; Trainor, S. 2018: Alaska. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II, pp. 1185–1241. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Walsh, J.E.; Thoman, R.L.; Bhatt, U.S. Using Climate Divisions to Analyze Variations and Trends in Alaska Temperature and Precipitation. J. Clim. 2014, 27, 2800–2818. [Google Scholar] [CrossRef]
- Partain, J.L.; Alden, S.; Strader, H.; Bhatt, U.S.; Bieniek, P.A.; Brettschneider, B.R.; Walsh, J.E.; Lader, R.T.; Olsson, P.Q.; Rupp, T.S.; et al. An Assessment of the Role of Anthropogenic Climate Change in the Alaska Fire Season of 2015. Bull. Am. Meteorol. Soc. 2016, 97, S14–S18. [Google Scholar] [CrossRef]
- Horel, J.; Splitt, M.; Dunn, L.; Pechmann, J.; White, B.; Ciliberti, C.; Lazarus, S.; Slemmer, J.; Zaff, D.; Burks, J. Mesowest: Cooperative mesonets in the western United States. Bull. Am. Meteorol. Soc. 2002, 83, 211–226. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Ziel, R.H.; Bieniek, P.A.; Bhatt, U.S.; Strader, H.; Rupp, T.S.; York, A. A Comparison of Fire Weather Indices with MODIS Fire Days for the Natural Regions of Alaska. Forests 2020, 11, 516. [Google Scholar] [CrossRef]
- Graham, R.M.; Hudson, S.R.; Maturilli, M. Improved Performance of ERA5 in Arctic Gateway Relative to Four Global Atmospheric Reanalyses. Geophys. Res. Lett. 2019, 46, 6138–6147. [Google Scholar] [CrossRef] [Green Version]
- White, J.H.R.; Walsh, J.E.; Thoman, R.L. Using Bayesian statistics to detect trends in Alaskan precipitation. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Walsh, J.E.; Bhatt, U.S.; Littell, J.S.; Leonawicz, M.; Lindgren, M.; Kurkowski, T.A.; Bieniek, P.A.; Thoman, R.; Gray, S.; Rupp, T.S. Downscaling of climate model output for Alaskan stakeholders. Environ. Model. Softw. 2018. [Google Scholar] [CrossRef]
- Kirchmeier-Young, M.C.; Zwiers, F.W.; Gillett, N.P.; Cannon, A.J. Attributing extreme fire risk in Western Canada to human emissions. Clim. Chang. 2017, 144, 365–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, W.C. An Approach towards a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Farahmand, A.; AghaKouchak, A. A generalized framework for deriving nonparametric standardized drought indicators. Adv. Water Resour. 2015, 76, 140–145. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Wood, A.; McEvoy, D.J.; Huntington, J.L.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand. J. Hydrometeorol. 2016, 17, 1745–1761. [Google Scholar] [CrossRef]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.C.; Danabasoglu, G.; Edwards, J.; et al. The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull. Am. Meteor. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef] [Green Version]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.E.V.; McAlpine, R.S.; Lynham, T.J.; Dube, D.E. The Canadian forest fire danger rating system: An overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Landrum, L.; Holland, M.M. The emergence of a New Arctic: When extremes become routine. Nat. Clim. Chang. 2020, 10, 1108–1115. [Google Scholar] [CrossRef]
- McAfee, S.A. Methodological differences in projected potential evapotranspiration. Clim. Chang. 2013, 120, 915–930. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- World Population Review, Alaska Population. 2020. Available online: https://worldpopulationreview.com/states/alaska-population (accessed on 8 January 2020).
- Alaska EPSCoR. The McKinley Fire: Rebuilding and Lessons Learned. YouTube. 2020. Available online: https://www.youtube.com/watch?v=no8dvnjbdHY&t=4s (accessed on 13 January 2021).
ERA5 2019 | CESM: PI | CESM: 1979–2019 | CESM: 2040–2080 | |
---|---|---|---|---|
Lowest SPEI | Average Probability of Exceedances of CESM’s PI Extreme by Ensemble Members (Range across Ensembles) | |||
SPEI JJA | −5.02 | −3.66 | 0.44% (4.9–0%) | 4.9% (17–0%) |
SPEI June | −1.52 | −1.71 | 2.1% (7–0%) | 13.2% (27–0%) |
SPEI July | −1.75 | −1.59 | 1.9% (4.9–0%) | 8.9% (12–0%) |
SPEI August | −1.75 | −1.71 | 2.4% (5–0%) | 6.5% (9.8–2.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatt, U.S.; Lader, R.T.; Walsh, J.E.; Bieniek, P.A.; Thoman, R.; Berman, M.; Borries-Strigle, C.; Bulock, K.; Chriest, J.; Hahn, M.; et al. Emerging Anthropogenic Influences on the Southcentral Alaska Temperature and Precipitation Extremes and Related Fires in 2019. Land 2021, 10, 82. https://doi.org/10.3390/land10010082
Bhatt US, Lader RT, Walsh JE, Bieniek PA, Thoman R, Berman M, Borries-Strigle C, Bulock K, Chriest J, Hahn M, et al. Emerging Anthropogenic Influences on the Southcentral Alaska Temperature and Precipitation Extremes and Related Fires in 2019. Land. 2021; 10(1):82. https://doi.org/10.3390/land10010082
Chicago/Turabian StyleBhatt, Uma S., Rick T. Lader, John E. Walsh, Peter A. Bieniek, Richard Thoman, Matthew Berman, Cecilia Borries-Strigle, Kristi Bulock, Jonathan Chriest, Micah Hahn, and et al. 2021. "Emerging Anthropogenic Influences on the Southcentral Alaska Temperature and Precipitation Extremes and Related Fires in 2019" Land 10, no. 1: 82. https://doi.org/10.3390/land10010082
APA StyleBhatt, U. S., Lader, R. T., Walsh, J. E., Bieniek, P. A., Thoman, R., Berman, M., Borries-Strigle, C., Bulock, K., Chriest, J., Hahn, M., Hendricks, A. S., Jandt, R., Little, J., McEvoy, D., Moore, C., Rupp, T. S., Schmidt, J., Stevens, E., Strader, H., ... Ziel, R. (2021). Emerging Anthropogenic Influences on the Southcentral Alaska Temperature and Precipitation Extremes and Related Fires in 2019. Land, 10(1), 82. https://doi.org/10.3390/land10010082